Moreno-Castelblanco Sonia Rocío, Vélez-Guerrero Manuel Andrés, Callejas-Cuervo Mauro
Software Research Group, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia.
Sensors (Basel). 2025 Aug 13;25(16):5030. doi: 10.3390/s25165030.
Motor imagery (MI) is defined as the cognitive ability to simulate motor movements while suppressing muscular activity. The electroencephalographic (EEG) signals associated with lower limb MI have become essential in brain-computer interface (BCI) research aimed at assisting individuals with motor disabilities.
This systematic review aims to evaluate methodologies for acquiring and processing EEG signals within brain-computer interface (BCI) applications to accurately identify lower limb MI.
A systematic search in Scopus and IEEE Xplore identified 287 records on EEG-based lower-limb MI using artificial intelligence. Following PRISMA guidelines (non-registered), 35 studies met the inclusion criteria after screening and full-text review.
Among the selected studies, 85% applied machine or deep learning classifiers such as SVM, CNN, and LSTM, while 65% incorporated multimodal fusion strategies, and 50% implemented decomposition algorithms. These methods improved classification accuracy, signal interpretability, and real-time application potential. Nonetheless, methodological variability and a lack of standardization persist across studies, posing barriers to clinical implementation.
AI-based EEG analysis effectively decodes lower-limb motor imagery. Future efforts should focus on harmonizing methods, standardizing datasets, and developing portable systems to improve neurorehabilitation outcomes. This review provides a foundation for advancing MI-based BCIs.
运动想象(MI)被定义为在抑制肌肉活动的同时模拟运动动作的认知能力。与下肢运动想象相关的脑电图(EEG)信号在旨在帮助运动障碍患者的脑机接口(BCI)研究中变得至关重要。
本系统评价旨在评估脑机接口(BCI)应用中获取和处理EEG信号以准确识别下肢运动想象的方法。
在Scopus和IEEE Xplore中进行系统检索,共识别出287条关于使用人工智能的基于EEG的下肢运动想象的记录。按照PRISMA指南(未注册),经过筛选和全文审查,有35项研究符合纳入标准。
在所选研究中,85%应用了诸如支持向量机(SVM)、卷积神经网络(CNN)和长短期记忆网络(LSTM)等机器学习或深度学习分类器,65%纳入了多模态融合策略,50%实施了分解算法。这些方法提高了分类准确率、信号可解释性和实时应用潜力。尽管如此,各研究之间方法的变异性和缺乏标准化的问题仍然存在,这对临床应用构成了障碍。
基于人工智能的EEG分析能够有效解码下肢运动想象。未来的工作应集中在统一方法、规范数据集以及开发便携式系统以改善神经康复效果。本综述为推进基于运动想象的脑机接口提供了基础。