文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

水果衍生的具有潜在生物活性的生物工程银纳米粒子。

Fruit Derived Potentially Bioactive Bioengineered Silver Nanoparticles.

机构信息

Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India.

Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

出版信息

Int J Nanomedicine. 2021 Nov 18;16:7711-7726. doi: 10.2147/IJN.S330763. eCollection 2021.


DOI:10.2147/IJN.S330763
PMID:34848956
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8612025/
Abstract

INTRODUCTION: Protein-derived biogenic syntheses of inorganic nanoparticles have gained immense attention because of their broad spectrum of applications. Proteins offer a reducing environment to enable the synthesis of nanoparticles and encapsulate synthesized nanoparticles and provide them temporal stability in addition to biocompatibility. METHODS: In the present study, fruit proteins were used to synthesize silver nanoparticles (AgNPs) at 37 °C over five days of incubation. The synthesis of AgNPs was confirmed by UV-Vis spectroscopy, TEM, zeta potential, and DLS analyses. Further, these NPs depicted antibacterial and antibiofilm effects. Additionally, the anticancer activities of nanoparticles were also tested against the lung cancer cell line (A549) with respect to the normal cell line (NRK) using MTT assay. Further, the estimation of ROS generation through DCFH-DA staining along with a reduction in mitochondrial membrane potential by Mito Tracker Red CMX staining was carried out. Moreover, nuclear degradation in the AgNPs treated cells was cross-checked by DAPI staining. RESULTS: The average size of AgNPs was detected to be 27 ±1 nm by TEM analysis, whereas surface encapsulation by protein was determined by FTIR spectroscopy. These NPs were effective against bacterial pathogens such as , and with MICs of 148.12 µg/mL, 165.63 µg/mL, 162.77 µg/mL, and 124.88 µg/mL, respectively. Furthermore, these nanoparticles inhibit the formation of biofilms of , and by 71.14%, 73.89%, 66.66%, and 64.81%, respectively. Similarly, these nanoparticles were also found to inhibit (IC50 = 57.11 µM) the lung cancer cell line (A549). At the same time, they were non-toxic against NRK cells up to a concentration of 200 µM. DISCUSSION: We successfully synthesized potentially potent antibacterial, antibiofilm and anticancer biogenic AgNPs.

摘要

简介:由于其广泛的应用,蛋白质衍生的生物合成无机纳米粒子引起了极大的关注。蛋白质提供了一个还原环境,使纳米粒子的合成成为可能,并对合成的纳米粒子进行封装,为其提供时间稳定性,同时保持生物相容性。

方法:在本研究中,使用水果蛋白质在 37°C 下孵育五天来合成银纳米粒子(AgNPs)。通过紫外可见光谱、TEM、zeta 电位和 DLS 分析来确认 AgNPs 的合成。此外,这些纳米粒子表现出抗菌和抗生物膜的作用。此外,还使用 MTT 测定法针对肺癌细胞系(A549)测试了纳米粒子的抗癌活性,并与正常细胞系(NRK)进行了比较。此外,通过 DCFH-DA 染色评估 ROS 的产生,并用 Mito Tracker Red CMX 染色评估线粒体膜电位的降低。此外,通过 DAPI 染色检查 AgNPs 处理细胞中的核降解。

结果:通过 TEM 分析检测到 AgNPs 的平均粒径为 27±1nm,而通过傅里叶变换红外光谱(FTIR)确定了蛋白质的表面包裹。这些纳米粒子对细菌病原体如 、 、 有效,MIC 值分别为 148.12μg/mL、165.63μg/mL、162.77μg/mL 和 124.88μg/mL。此外,这些纳米粒子还抑制了 、 生物膜的形成,抑制率分别为 71.14%、73.89%、66.66%和 64.81%。同样,这些纳米粒子也被发现抑制了肺癌细胞系(A549)的生长(IC50=57.11μM)。同时,它们在 200μM 浓度下对 NRK 细胞没有毒性。

讨论:我们成功地合成了具有潜在抗菌、抗生物膜和抗癌作用的生物合成 AgNPs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/f974e4a5f9d5/IJN-16-7711-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/d404d1c4f4fe/IJN-16-7711-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/23cd14c92e04/IJN-16-7711-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/28a5b6908cbf/IJN-16-7711-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/64bd65159ef4/IJN-16-7711-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/2dc081541065/IJN-16-7711-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/3de8baa7412f/IJN-16-7711-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/66751df9ed09/IJN-16-7711-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/70a65840d691/IJN-16-7711-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/f974e4a5f9d5/IJN-16-7711-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/d404d1c4f4fe/IJN-16-7711-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/23cd14c92e04/IJN-16-7711-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/28a5b6908cbf/IJN-16-7711-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/64bd65159ef4/IJN-16-7711-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/2dc081541065/IJN-16-7711-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/3de8baa7412f/IJN-16-7711-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/66751df9ed09/IJN-16-7711-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/70a65840d691/IJN-16-7711-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/8612025/f974e4a5f9d5/IJN-16-7711-g0009.jpg

相似文献

[1]
Fruit Derived Potentially Bioactive Bioengineered Silver Nanoparticles.

Int J Nanomedicine. 2021

[2]
Silver and gold nanoparticles: Eco-friendly synthesis, antibiofilm, antiviral, and anticancer bioactivities.

Prep Biochem Biotechnol. 2024-4

[3]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[4]
Phytosynthesis of Silver Nanoparticles Using Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities.

Int J Nanomedicine. 2021

[5]
Rosmarinic Acid-Rich Extract-Derived Silver Nanoparticles: A Green Synthesis Approach for Multifunctional Biomedical Applications including Antibacterial, Antioxidant, and Anticancer Activities.

Molecules. 2024-3-12

[6]
Green Synthesis of Silver Nanoparticles Using Aerial Part Extract of the Boiss. Plant and Their Biological Activity.

Molecules. 2022-12-28

[7]
Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles.

Int J Nanomedicine. 2021

[8]
In silico Prediction of Metabolites and Green Synthesis of Silver Nanoparticles - Opportunities for Safer Anti-Bacterial and Anti-Cancer Precision Medicine.

Int J Nanomedicine. 2023

[9]
A Potent and Safer Anticancer and Antibacterial -Based Green Synthesized Silver Nanoparticle.

Int J Nanomedicine. 2020-5-28

[10]
Enhanced Anti-Bacterial Activity Of Biogenic Silver Nanoparticles Synthesized From Extracts.

Int J Nanomedicine. 2019-11-19

引用本文的文献

[1]
Antimicrobial activity and mechanistic insights of AMP-17 against drug-resistant and its efficacy in wound infection management.

Front Cell Infect Microbiol. 2025-8-8

[2]
silver chloride nanoparticles and mediated silver/silver chloride nanoparticles inhibit human hepatocellular and lung cancer cell lines.

Biochem Biophys Rep. 2024-9-5

[3]
Green synthesized silver nanoparticles, a sustainable approach for fruit and vegetable preservation: An overview.

Food Chem X. 2024-7-15

[4]
A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents.

Heliyon. 2024-4-16

[5]
Evaluation of the biological responses of silver nanoparticles synthesized using x extract.

RSC Adv. 2023-10-11

[6]
Antibacterial efficacy of synthesized silver nanoparticles of Microbacterium proteolyticum LA2(R) and Streptomyces rochei LA2(O) against biofilm forming meningitis causing microbes.

Sci Rep. 2023-3-13

[7]
Silver Nanoparticles Produced by Laser Ablation and Re-Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation.

Int J Mol Sci. 2022-10-10

[8]
Evaluating the Use of TiO Nanoparticles for Toxicity Testing in Pulmonary A549 Cells.

Int J Nanomedicine. 2022

[9]
Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications.

Saudi J Biol Sci. 2022-6

[10]
Antitumor Activity against A549 Cancer Cells of Three Novel Complexes Supported by Coating with Silver Nanoparticles.

Int J Mol Sci. 2022-3-10

本文引用的文献

[1]
Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles.

Nanotechnology. 2007-5-4

[2]
Silk Cocoon-Derived Protein Bioinspired Gold Nanoparticles as a Formidable Anticancer Agent.

J Biomed Nanotechnol. 2021-4-1

[3]
Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus.

Eur J Med Chem. 2021-3-5

[4]
Therapeutic Applications of Biostable Silver Nanoparticles Synthesized Using Peel Extract of : Antibacterial and Anticancer Activities.

Nanomaterials (Basel). 2020-9-30

[5]
Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment.

J Control Release. 2020-12-10

[6]
Sericin-functionalized GNPs potentiate the synergistic effect of levofloxacin and balofloxacin against MDR bacteria.

Microb Pathog. 2020-11

[7]
Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms.

Colloids Surf B Biointerfaces. 2020-7

[8]
Papain Mediated Synthesized Gold Nanoparticles Encore the Potency of Bioconjugated Flutamide.

Curr Pharm Biotechnol. 2021

[9]
Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment.

J Hazard Mater. 2020-5-15

[10]
Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB.

Nanoscale. 2020-1-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索