文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

激光烧蚀和再辐照产生的银纳米颗粒可有效预防种植体周围炎多物种生物膜的形成。

Silver Nanoparticles Produced by Laser Ablation and Re-Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation.

机构信息

Departamento de Microbiología, Hospital do Meixoeiro, Complejo Hospitalario Universitario de Vigo, 36312 Vigo, Spain.

Departamento de Microbiología, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain.

出版信息

Int J Mol Sci. 2022 Oct 10;23(19):12027. doi: 10.3390/ijms231912027.


DOI:10.3390/ijms231912027
PMID:36233328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9570054/
Abstract

Implant-associated infection due to biofilm formation is a growing problem. Given that silver nanoparticles (Ag-NPs) have shown antibacterial effects, our goal is to study their effect against multispecies biofilm involved in the development of peri-implantitis. To this purpose, Ag-NPs were synthesized by laser ablation in de-ionized water using two different lasers, leading to the production of colloidal suspensions. Subsequently, part of each suspension was subjected to irradiation one and three times with the same laser source with which it was obtained. Ag-NPs were immobilized on the surface of titanium discs and the resultant materials were compared with unmodified titanium coupons. Nanoparticles were physico-chemically analysed to determine their shape, crystallinity, chemical composition, and mean diameter. The materials were incubated for 90 min or 48 h, to evaluate bacterial adhesion or biofilm formation respectively with or oral mixed bacterial flora composed of , , , and . Ag-NPs help prevent the formation of biofilms both by and by mixed oral bacterial flora. Nanoparticles re-irradiated three times showed the biggest antimicrobial effects. Modifying dental implants in this way could prevent the development of peri-implantitis.

摘要

植入物相关感染是由于生物膜形成而导致的一个日益严重的问题。鉴于纳米银颗粒(Ag-NPs)具有抗菌作用,我们的目标是研究其对参与牙周炎发展的多物种生物膜的作用。为此,我们使用两种不同的激光器通过激光烧蚀在去离子水中合成了 Ag-NPs,从而产生了胶体悬浮液。随后,将每种悬浮液的一部分用相同的激光源照射一次和三次,以进行照射。Ag-NPs 被固定在钛盘的表面上,然后将所得材料与未经修饰的钛片进行比较。对纳米颗粒进行物理化学分析,以确定其形状、结晶度、化学成分和平均直径。将材料孵育 90 分钟或 48 小时,以分别评估与 或与由 、 、 和 组成的口腔混合细菌菌群的细菌黏附或生物膜形成。Ag-NPs 有助于通过 和口腔混合细菌菌群来预防生物膜的形成。经过三次再照射的纳米颗粒显示出最大的抗菌效果。以这种方式修饰牙种植体可以预防牙周炎的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/e0ec82026d06/ijms-23-12027-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/34d8f50e4fd7/ijms-23-12027-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/db1d17ece917/ijms-23-12027-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/d8ab335824e6/ijms-23-12027-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/6870fa521789/ijms-23-12027-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/3404affd3397/ijms-23-12027-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/4334224c74ea/ijms-23-12027-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/ac431916f3e8/ijms-23-12027-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/1353459f4790/ijms-23-12027-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/c6b652393512/ijms-23-12027-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/32a09655b1c0/ijms-23-12027-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/684c498225a8/ijms-23-12027-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/55912c878de8/ijms-23-12027-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/5aa4c324d528/ijms-23-12027-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/e0ec82026d06/ijms-23-12027-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/34d8f50e4fd7/ijms-23-12027-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/db1d17ece917/ijms-23-12027-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/d8ab335824e6/ijms-23-12027-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/6870fa521789/ijms-23-12027-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/3404affd3397/ijms-23-12027-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/4334224c74ea/ijms-23-12027-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/ac431916f3e8/ijms-23-12027-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/1353459f4790/ijms-23-12027-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/c6b652393512/ijms-23-12027-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/32a09655b1c0/ijms-23-12027-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/684c498225a8/ijms-23-12027-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/55912c878de8/ijms-23-12027-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/5aa4c324d528/ijms-23-12027-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ea/9570054/e0ec82026d06/ijms-23-12027-g014.jpg

相似文献

[1]
Silver Nanoparticles Produced by Laser Ablation and Re-Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation.

Int J Mol Sci. 2022-10-10

[2]
Antibiofilm activity of sandblasted and laser-modified titanium against microorganisms isolated from peri-implantitis lesions.

J Chemother. 2016-10

[3]
In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery.

Int J Nanomedicine. 2017-6-6

[4]
Poly-3-hydroxybutyrate-silver nanoparticles membranes as advanced antibiofilm strategies for combatting peri-implantitis.

Int J Biol Macromol. 2024-6

[5]
Incorporation of staphylococci into titanium-grown biofilms: an in vitro "submucosal" biofilm model for peri-implantitis.

Clin Oral Implants Res. 2016-7

[6]
Antimicrobial Potential of Strontium-Functionalized Titanium Against Bacteria Associated With Peri-Implantitis.

Clin Exp Dent Res. 2024-8

[7]
Antibiofilm efficacies of cold plasma and er: YAG laser on biofilm on titanium for nonsurgical treatment of peri-implantitis.

Niger J Clin Pract. 2018-6

[8]
Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application.

J Appl Biomater Funct Mater. 2019

[9]
Low-Temperature Plasma Short Exposure to Decontaminate Peri-Implantitis-Related Multispecies Biofilms on Titanium Surfaces .

Biomed Res Int. 2022

[10]
In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces.

J Mater Sci Mater Med. 2018-11-3

引用本文的文献

[1]
Antibacterial and Anti-Adherence Efficacy of Silver Nanoparticles Against Endodontic Biofilms: An In Vitro and Ex Vivo Study.

Pharmaceutics. 2025-6-26

[2]
Potential role of metal nanoparticles in treatment of peri-implant mucositis and peri-implantitis.

Biomed Eng Online. 2024-10-12

[3]
Effects of silver-decorated PLGA nanoparticles on biofilms and evaluation of the detoxification limit of bacteria against these nanoparticles.

Nanoscale Adv. 2024-8-31

[4]
Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities.

J Funct Biomater. 2024-7-10

[5]
Solvent-Induced Lignin Conformation Changes Affect Synthesis and Antibacterial Performance of Silver Nanoparticle.

Nanomaterials (Basel). 2024-5-30

[6]
Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment.

Biotechnol Rep (Amst). 2024-1-26

[7]
Long-term application of silver nanoparticles in dental restoration materials: potential toxic injury to the CNS.

J Mater Sci Mater Med. 2023-10-19

[8]
Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale.

Front Bioeng Biotechnol. 2023-7-21

[9]
Newly identified pathogens in periodontitis: evidence from an association and an elimination study.

J Oral Microbiol. 2023-5-27

[10]
Understanding bacterial biofilms: From definition to treatment strategies.

Front Cell Infect Microbiol. 2023

本文引用的文献

[1]
Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles.

ACS Appl Bio Mater. 2022-4-18

[2]
Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry.

Int J Nanomedicine. 2022

[3]
Fruit Derived Potentially Bioactive Bioengineered Silver Nanoparticles.

Int J Nanomedicine. 2021

[4]
Hydrodynamics and surface properties influence biofilm proliferation.

Adv Colloid Interface Sci. 2021-2

[5]
Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications.

Nanomaterials (Basel). 2020-11-23

[6]
Economic analysis of healthcare-associated infection prevention and control interventions in medical and surgical units: systematic review using a discounting approach.

J Hosp Infect. 2020-7-8

[7]
Beyond Risk: Bacterial Biofilms and Their Regulating Approaches.

Front Microbiol. 2020-5-21

[8]
Bacteria Exposed to Silver Nanoparticles Synthesized by Laser Ablation in Water: Modelling Growth and Inactivation.

Materials (Basel). 2020-2-1

[9]
Novel Approaches to the Control of Oral Microbial Biofilms.

Biomed Res Int. 2018-12-31

[10]
Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention.

Heliyon. 2018-12-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索