文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

迷迭香酸丰富提取物衍生的银纳米粒子:一种用于多功能生物医学应用的绿色合成方法,包括抗菌、抗氧化和抗癌活性。

Rosmarinic Acid-Rich Extract-Derived Silver Nanoparticles: A Green Synthesis Approach for Multifunctional Biomedical Applications including Antibacterial, Antioxidant, and Anticancer Activities.

机构信息

School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.

出版信息

Molecules. 2024 Mar 12;29(6):1250. doi: 10.3390/molecules29061250.


DOI:10.3390/molecules29061250
PMID:38542889
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10975919/
Abstract

This study describes a simple, cost-effective, and eco-friendly method for synthesizing silver nanoparticles using a rosmarinic acid extract from (PFRAE) as the bioreduction agent. The resulting nanoparticles, called PFRAE-AgNPs, were characterized using various analytical techniques. The UV-Vis spectrum confirmed the formation of PFRAE-AgNPs, and the FTIR spectrum indicated the participation of rosmarinic acid in their synthesis and stabilization. The XRD pattern revealed the crystal structure of PFRAE-AgNPs, and the TEM analysis showed their spherical morphology with sizes ranging between 20 and 80 nm. The DLS analysis indicated that PFRAE-AgNPs were monodispersed with an average diameter of 44.0 ± 3.2 nm, and the high negative zeta potential (-19.65 mV) indicated their high stability. In the antibacterial assays, the PFRAE-AgNPs showed potent activity against both Gram-positive ( and ) and Gram-negative ( and ) bacterial pathogens, suggesting that they could be used as a potential antibacterial agent in the clinical setting. Moreover, the antioxidant activity of PFRAE-AgNPs against DPPH and ABTS radical scavengers highlights their potential in the treatment of various oxidative stress-related diseases. PFRAE-AgNPs also demonstrated significant anticancer activity against a range of cell lines including human colon cancer (COLO205), human prostate carcinoma (PC-3), human lung adenocarcinoma (A549), and human ovarian cancer (SKOV3) cell lines suggesting their potential in cancer therapy. The nanoparticles may also have potential in drug delivery, as their small size and high stability could enable them to cross biological barriers and deliver drugs to specific target sites. In addition to the aforementioned properties, PFRAE-AgNPs were found to be biocompatible towards normal (CHO) cells, which is a crucial characteristic for their application in cancer therapy and drug delivery systems. Their antibacterial, antioxidant, and anticancer properties make them promising candidates for the development of new therapeutic agents. Furthermore, their small size, high stability, and biocompatibility could enable them to be used in drug delivery systems to enhance drug efficacy and reduce side effects.

摘要

本研究描述了一种使用迷迭香酸提取物(PFRAE)作为生物还原剂合成银纳米粒子的简单、经济实惠且环保的方法。所得的纳米粒子称为 PFRAE-AgNPs,使用各种分析技术对其进行了表征。紫外-可见光谱证实了 PFRAE-AgNPs 的形成,傅里叶变换红外光谱表明迷迭香酸参与了它们的合成和稳定。X 射线衍射图案揭示了 PFRAE-AgNPs 的晶体结构,透射电子显微镜分析显示其具有 20 至 80nm 范围内的球形形态。动态光散射分析表明 PFRAE-AgNPs 是单分散的,平均直径为 44.0±3.2nm,高负 zeta 电位(-19.65mV)表明其高度稳定。在抗菌试验中,PFRAE-AgNPs 对革兰氏阳性( 和 )和革兰氏阴性( 和 )细菌病原体均表现出强大的活性,表明它们可用作临床中的潜在抗菌剂。此外,PFRAE-AgNPs 对 DPPH 和 ABTS 自由基清除剂的抗氧化活性突出了它们在治疗各种氧化应激相关疾病方面的潜力。PFRAE-AgNPs 对一系列细胞系(包括人结肠癌细胞(COLO205)、人前列腺癌细胞(PC-3)、人肺腺癌细胞(A549)和人卵巢癌细胞(SKOV3))的抗癌活性也表明了它们在癌症治疗中的潜力。这些纳米粒子在药物递送方面也可能具有潜力,因为它们的小尺寸和高稳定性可以使它们能够穿过生物屏障并将药物递送到特定的靶部位。除了上述特性外,PFRAE-AgNPs 对正常(CHO)细胞表现出生物相容性,这是其在癌症治疗和药物递送系统中的应用的关键特性。它们的抗菌、抗氧化和抗癌特性使它们成为开发新治疗剂的有前途的候选者。此外,它们的小尺寸、高稳定性和生物相容性可以使它们用于药物递送系统中,以提高药物疗效并减少副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/f569c4625ad3/molecules-29-01250-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/990f9f822ec3/molecules-29-01250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/51c6d94eaa29/molecules-29-01250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/f99cccbb2b59/molecules-29-01250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/0f216ca8d435/molecules-29-01250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/7061719b1ddf/molecules-29-01250-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/b39973c3e10d/molecules-29-01250-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/70f24d8da474/molecules-29-01250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/b5457166b28e/molecules-29-01250-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/89d2fbf4d4c6/molecules-29-01250-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/4136c4ff6d34/molecules-29-01250-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/f569c4625ad3/molecules-29-01250-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/990f9f822ec3/molecules-29-01250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/51c6d94eaa29/molecules-29-01250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/f99cccbb2b59/molecules-29-01250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/0f216ca8d435/molecules-29-01250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/7061719b1ddf/molecules-29-01250-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/b39973c3e10d/molecules-29-01250-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/70f24d8da474/molecules-29-01250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/b5457166b28e/molecules-29-01250-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/89d2fbf4d4c6/molecules-29-01250-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/4136c4ff6d34/molecules-29-01250-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/10975919/f569c4625ad3/molecules-29-01250-g011.jpg

相似文献

[1]
Rosmarinic Acid-Rich Extract-Derived Silver Nanoparticles: A Green Synthesis Approach for Multifunctional Biomedical Applications including Antibacterial, Antioxidant, and Anticancer Activities.

Molecules. 2024-3-12

[2]
Phytosynthesis of Silver Nanoparticles Using Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities.

Int J Nanomedicine. 2021

[3]
Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Flavonoid Extract: Antibacterial, Antioxidant, and Cell Toxicity Properties against Colon Cancer Cells.

Molecules. 2023-9-4

[4]
Comparative assessment of the biological activity of the green synthesized silver nanoparticles and aqueous leaf extract of Perilla frutescens (L.).

Sci Rep. 2023-4-19

[5]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[6]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

[7]
Green synthesis of silver nanoparticles employing hamdard joshanda extract: putative antimicrobial potential against gram positive and gram negative bacteria.

Biometals. 2024-4

[8]
Biosynthesis of Silver Nanoparticles from : Enhancement of Antibacterial, Wound Healing, Antidiabetic and Antioxidant Activities.

Int J Nanomedicine. 2019-12-11

[9]
Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.

Int J Nanomedicine. 2016-4-29

[10]
The Characterization and Study of Antibacterial, Free Radical Scavenging, and Anticancer Potential of -Mediated Silver Nanoparticles.

Molecules. 2023-11-25

引用本文的文献

[1]
Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities.

Sci Rep. 2025-9-1

[2]
L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation.

Foods. 2025-6-30

[3]
Comprehensive Review of : Chemical Composition, Pharmacological Mechanisms, and Industrial Applications in Food and Health Products.

Foods. 2025-4-3

[4]
Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity-A 2024 Update.

ACS Omega. 2025-2-18

本文引用的文献

[1]
Mitochondria Deregulations in Cancer Offer Several Potential Targets of Therapeutic Interventions.

Int J Mol Sci. 2023-6-21

[2]
Exploring the cytotoxicity on human lung cancer cells and DNA binding stratagem of camptothecin functionalised silver nanoparticles through multi-spectroscopic, and calorimetric approach.

Sci Rep. 2023-6-3

[3]
Biofabrication of nanoparticles: sources, synthesis, and biomedical applications.

Front Bioeng Biotechnol. 2023-5-2

[4]
Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications.

Environ Res. 2023-8-15

[5]
Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells.

Biochem Biophys Res Commun. 2023-6-18

[6]
and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases.

Antioxidants (Basel). 2023-3-9

[7]
Silver Nanoparticles in Dental Applications: A Descriptive Review.

Bioengineering (Basel). 2023-3-5

[8]
Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review.

J Nanopart Res. 2023

[9]
Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens.

Microorganisms. 2023-2-1

[10]
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?

Life (Basel). 2023-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索