Hanif Asma, Butt A I K, Ahmad Shabir, Din Rahim Ud, Inc Mustafa
Department of Mathematics, Government College University Lahore, Lahore, Pakistan.
Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa Pakistan.
Eur Phys J Plus. 2021;136(11):1179. doi: 10.1140/epjp/s13360-021-02178-1. Epub 2021 Nov 24.
This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized, and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo's sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17.
本文致力于研究一个模糊分数阶数学模型,该模型用于回顾新冠传染病的传播动力学。所提出的动力学模型由易感、潜伏、有症状、无症状、隔离、住院和康复 compartments 组成。在本研究中,我们处理在 Caputo 意义下定义的模糊分数阶模型。我们证明了状态变量的正性,即代表模型不同 compartments 的所有状态变量都是正的。利用 Gronwall 不等式,我们证明了模型的解是有界的。利用下一代矩阵的概念,我们找到了模型的基本再生数。我们分别使用 Castillo-Chavez 概念和带有 Lasalle 不变原理的 Lyapunov 理论证明了平衡点的局部和全局稳定性。我们通过 Schauder 和 Banach 不动点定理给出了揭示所考虑模型解的存在性和唯一性的结果。使用模糊混合拉普拉斯方法,我们得到了所提出模型的近似解。结果通过 MATLAB - 17 以图形方式呈现。