State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
Department of Automation, Tsinghua University, Beijing, China.
Lab Chip. 2022 Jan 18;22(2):240-249. doi: 10.1039/d1lc00755f.
Single-cell impedance flow cytometry (IFC) is emerging as a label-free and non-invasive method for characterizing the electrical properties and revealing sample heterogeneity. At present, most IFC studies utilize phenomenological parameters (, impedance amplitude, phase and opacity) to characterize single cells instead of intrinsic biophysical metrics (, radius , cytoplasm conductivity and specific membrane capacitance ). Intrinsic parameters are normally calculated off-line by time-consuming model-fitting methods. Here, we propose to employ neural network (NN)-enhanced IFC to achieve both real-time single-cell intrinsic characterization and intrinsic parameter-based cell classification at high throughput. Three intrinsic parameters (, and ) can be obtained online and in real-time a trained NN at 0.3 ms per single-cell event, achieving significant improvement in calculation speed. Experiments involving four cancer cells and one lymphocyte cell demonstrated 91.5% classification accuracy in the cell type for a test group of 9751 cell samples. By performing a viability assay, we provide evidence that the IFC test would not substantially affect the cell property. We envision that the NN-enhanced real-time IFC will provide a new platform for high-throughput, real-time and online cell intrinsic electrical characterization.
单细胞阻抗流细胞术 (IFC) 作为一种无标记和非侵入性的方法,正在成为一种用于描述细胞电学特性和揭示样本异质性的新兴方法。目前,大多数 IFC 研究利用现象学参数(阻抗幅度、相位和不透明度)来描述单细胞,而不是内在的生物物理指标(半径 、细胞质电导率和特定膜电容)。内在参数通常通过耗时的模型拟合方法离线计算。在这里,我们提出了一种基于神经网络 (NN) 的增强型 IFC 方法,以实现高通量的实时单细胞内在特征描述和基于内在参数的细胞分类。通过训练好的神经网络,我们可以在线实时获得三个内在参数(、和 ),每个单细胞事件的计算速度达到 0.3 毫秒,显著提高了计算速度。涉及四种癌细胞和一种淋巴细胞的实验表明,在 9751 个细胞样本的测试组中,细胞类型的分类准确率达到 91.5%。通过进行活力测定,我们提供了证据表明 IFC 测试不会显著影响细胞特性。我们设想,基于神经网络的增强型实时 IFC 将为高通量、实时和在线细胞内在电特性描述提供一个新的平台。