Suppr超能文献

基于受体结合域的免疫分析可有效区分 SARS-CoV2 暴露和未暴露的养殖水貂。

Receptor-binding domain-based immunoassays for serosurveillance differentiate efficiently between SARS-CoV2-exposed and non-exposed farmed mink.

机构信息

Departments of R&D, Eurofins-Ingenasa, Madrid, Spain.

Department of Animal Health, Galician Mink Breeders Association (AGAVI), Santiago de Compostela, Spain.

出版信息

J Vet Diagn Invest. 2022 Mar;34(2):190-198. doi: 10.1177/10406387211057859. Epub 2021 Dec 2.

Abstract

During the COVID-19 pandemic, infection of farmed mink has become not only an economic issue but also a widespread public health concern. International agencies have advised the use of strict molecular and serosurveillance methods for monitoring the SARS-CoV2 status on mink farms. We developed 2 ELISAs and a duplex protein microarray immunoassay (MI), all in a double-recognition format (DR), to detect SARS-CoV2 antibodies specific to the receptor-binding domain (RBD) of the spike protein and to the full-length nucleoprotein (N) in mink sera. We collected 264 mink serum samples and 126 oropharyngeal samples from 5 Spanish mink farms. In both of the ELISAs and the MI, RBD performed better than N protein for serologic differentiation of mink from SARS-CoV2-positive and -negative farms. Therefore, RBD was the optimal antigenic target for serosurveillance of mink farms.

摘要

在 COVID-19 大流行期间,养殖水貂的感染不仅成为一个经济问题,还引起了广泛的公众健康关注。国际机构建议使用严格的分子和血清学监测方法来监测水貂养殖场的 SARS-CoV2 状况。我们开发了 2 种 ELISA 和一种双蛋白微阵列免疫测定法(MI),均采用双识别格式(DR),用于检测水貂血清中针对刺突蛋白受体结合域(RBD)和全长核蛋白(N)的 SARS-CoV2 抗体。我们从 5 个西班牙水貂养殖场收集了 264 份水貂血清样本和 126 份口咽拭子样本。在两种 ELISA 和 MI 中,RBD 都比 N 蛋白更能区分 SARS-CoV2 阳性和阴性养殖场的血清学结果。因此,RBD 是水貂养殖场血清学监测的最佳抗原靶标。

相似文献

2
Infection, recovery and re-infection of farmed mink with SARS-CoV-2.
PLoS Pathog. 2021 Nov 15;17(11):e1010068. doi: 10.1371/journal.ppat.1010068. eCollection 2021 Nov.
3
SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020.
Euro Surveill. 2020 Jun;25(23). doi: 10.2807/1560-7917.ES.2020.25.23.2001005.
4
SARS-CoV2 spike protein gene variants with N501T and G142D mutation-dominated infections in mink in the United States.
J Vet Diagn Invest. 2021 Sep;33(5):939-942. doi: 10.1177/10406387211023481. Epub 2021 Jun 10.
5
Comparative evaluation of SARS-CoV-2 IgG assays in India.
J Clin Virol. 2020 Oct;131:104609. doi: 10.1016/j.jcv.2020.104609. Epub 2020 Aug 24.
6
Investigations into SARS-CoV-2 and other coronaviruses on mink farms in France late in the first year of the COVID-19 pandemic.
PLoS One. 2023 Aug 25;18(8):e0290444. doi: 10.1371/journal.pone.0290444. eCollection 2023.
8
Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during the epidemic in Denmark, June-November 2020.
PLoS Pathog. 2024 Jul 1;20(7):e1012039. doi: 10.1371/journal.ppat.1012039. eCollection 2024 Jul.
10
Severe Acute Respiratory Syndrome Coronavirus 2 in Farmed Mink (Neovison vison), Poland.
Emerg Infect Dis. 2021 Sep;27(9):2333-2339. doi: 10.3201/eid2709.210286.

引用本文的文献

本文引用的文献

1
Replication, pathogenicity, and transmission of SARS-CoV-2 in minks.
Natl Sci Rev. 2020 Dec 8;8(3):nwaa291. doi: 10.1093/nsr/nwaa291. eCollection 2021 Mar.
3
COVID-19 Diagnostic Strategies Part II: Protein-Based Technologies.
Bioengineering (Basel). 2021 Apr 28;8(5):54. doi: 10.3390/bioengineering8050054.
4
Predicting COVID-19 Severity with a Specific Nucleocapsid Antibody plus Disease Risk Factor Score.
mSphere. 2021 Apr 28;6(2):e00203-21. doi: 10.1128/mSphere.00203-21.
5
A comparative review of immunoassays for COVID-19 detection.
Expert Rev Clin Immunol. 2021 Jun;17(6):573-599. doi: 10.1080/1744666X.2021.1908886.
6
Monitoring of SARS-CoV-2 infection in mustelids.
EFSA J. 2021 Mar 3;19(3):e06459. doi: 10.2903/j.efsa.2021.6459. eCollection 2021 Mar.
7
Multiplexed, microscale, microarray-based serological assay for antibodies against all human-relevant coronaviruses.
J Virol Methods. 2021 May;291:114111. doi: 10.1016/j.jviromet.2021.114111. Epub 2021 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验