Suppr超能文献

营养、动脉粥样硬化、动脉成像、心血管风险分层以及在 COVID-19 框架下的表现:综述性叙述。

Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review.

机构信息

Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA.

Max Institute of Cancer Care, Max Superspeciality Hospital, 110058 New Delhi, India.

出版信息

Front Biosci (Landmark Ed). 2021 Nov 30;26(11):1312-1339. doi: 10.52586/5026.

Abstract

: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. : The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. : By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.

摘要

动脉粥样硬化是心血管疾病 (CVD) 的主要原因。多种危险因素可导致动脉粥样硬化,营养改变就是其中之一。在 CVD 风险评估过程中,营养往往被忽视。营养改变以及颈动脉超声成像驱动的动脉粥样硬化斑块特征可以帮助理解和消除与 CVD 晚期诊断相关的问题。人工智能 (AI) 是另一种被广泛应用于 CVD 风险评估和管理的有前途的技术。因此,我们假设可以使用颈动脉超声成像准确监测动脉粥样硬化性 CVD 的风险,使用基于 AI 的算法进行预测,并通过适当的营养加以减少。

本综述通过深入了解斑块发展各个阶段涉及的过程,展示了营养与动脉粥样硬化之间的病理生理学联系。在针对病因并通过低成本、用户友好的基于超声的动脉成像得出结果后,重要的是 (i) 对风险进行分层,以及 (ii) 通过测量斑块负担和计算风险评分来监测它们,这是预防框架的一部分。基于人工智能 (AI) 的策略用于提供高效的 CVD 风险评估。最后,该综述介绍了 AI 在 COVID-19 期间进行 CVD 风险评估的作用。

通过研究低密度脂蛋白形成、饱和脂肪和反式脂肪以及导致斑块形成的其他饮食成分的机制,我们证明了在正常和 COVID 时期,营养和动脉粥样硬化疾病形成可导致 CVD 风险评估。此外,如果将营养作为相关危险因素的一部分纳入其中,那么它可以受益于基于 AI 的 CVD 风险评估对动脉粥样硬化疾病进展及其管理的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验