Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
Gut Microbes. 2021 Jan-Dec;13(1):2006586. doi: 10.1080/19490976.2021.2006586.
Research on the gut-brain axis has accelerated substantially over the course of the last years. Many reviews have outlined the important implications of understanding the relation of the gut microbiota with human brain function and behavior. One substantial drawback in integrating gut microbiome and brain data is the lack of integrative multivariate approaches that enable capturing variance in both modalities simultaneously. To address this issue, we applied a linked independent component analysis (LICA) to microbiota and brain connectivity data.We analyzed data from 58 healthy females (mean age = 21.5 years). Magnetic Resonance Imaging data were acquired using resting state functional imaging data. The assessment of gut microbial composition from feces was based on sequencing of the V4 16S rRNA gene region. We used the LICA model to simultaneously factorize the subjects' large-scale brain networks and microbiome relative abundance data into 10 independent components of spatial and abundance variation.LICA decomposition resulted in four components with non-marginal contribution of the microbiota data. The default mode network featured strongly in three components, whereas the two-lateralized fronto-parietal attention networks contributed to one component. The executive-control (with the default mode) network was associated to another component. We found that the abundance of genus was associated with the strength of expression of all networks, whereas was associated with the default mode and frontoparietal-attention networks.We provide the first exploratory evidence for multivariate associative patterns between the gut microbiota and brain network connectivity in healthy humans considering the complexity of both systems.
过去几年,肠道-大脑轴的研究取得了实质性的进展。许多综述概述了理解肠道微生物群与人类大脑功能和行为之间关系的重要意义。将肠道微生物组和大脑数据整合起来的一个主要障碍是缺乏能够同时捕捉两种模态方差的综合多元方法。为了解决这个问题,我们应用了一种关联独立成分分析(LICA)来分析微生物组和大脑连通性数据。我们分析了 58 名健康女性(平均年龄为 21.5 岁)的数据。使用静息状态功能成像数据采集磁共振成像数据。粪便中肠道微生物组成的评估基于 V4 16S rRNA 基因区域的测序。我们使用 LICA 模型将受试者的大规模大脑网络和微生物组相对丰度数据同时分解为 10 个具有空间和丰度变化的独立成分。LICA 分解产生了四个具有微生物数据非边缘贡献的成分。默认模式网络在三个成分中表现强烈,而双侧额顶注意网络则对一个成分有贡献。执行控制(与默认模式)网络与另一个成分相关。我们发现,属的丰度与所有网络的表达强度相关,而 与默认模式和额顶注意网络相关。我们提供了第一个探索性证据,表明在考虑到两个系统的复杂性的情况下,健康人类的肠道微生物群和大脑网络连通性之间存在多元关联模式。
Psychopharmacology (Berl). 2019-1-2
Prog Neuropsychopharmacol Biol Psychiatry. 2022-3-8
J Psychiatry Neurosci. 2024
Front Microbiol. 2025-7-15
Int J Mol Sci. 2023-10-31
Int J Biol Sci. 2023
Neuroimage. 2020-4-15
Physiol Rev. 2019-10-1
Front Neurol. 2019-8-13