Suppr超能文献

利用机器学习衍生的最优分类树对剖宫产率进行基准测试。

Benchmarking cesarean delivery rates using machine learning-derived optimal classification trees.

机构信息

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Alpert Medical School of Brown University, Providence, Rhode Island, USA.

Interpretable AI, One Broadway, Cambridge, Massachusetts, USA.

出版信息

Health Serv Res. 2022 Aug;57(4):796-805. doi: 10.1111/1475-6773.13921. Epub 2022 Jan 12.

Abstract

OBJECTIVE

To establish a case-adjusted hospital-specific performance evaluation tool using machine learning methodology for cesarean delivery.

DATA SOURCES

Secondary data were collected from patients between January 1, 2015 and February 28, 2018 using a hospital's "Electronic Data Warehouse" database from Illinois, USA.

STUDY DESIGN

The machine learning methodology of optimal classification trees (OCTs) was used to predict cesarean delivery rate by physician group, thereby establishing the case-adjusted benchmarking standards in comparison to the overall hospital cesarean delivery rate. Outcomes of specific patient populations of each participating practice were predicted, as if each were treated in the overall hospital environment. The resulting OCTs estimate physician group expected cesarean delivery outcomes, both aggregate and in specific clinical situations.

DATA COLLECTION/EXTRACTION METHODS: Twelve thousand eight hunderd and forty one singleton, vertex, term deliveries, cared for by practices with ≥50 births.

PRINCIPAL FINDINGS

The overall rate of cesarean delivery was 18.6% (n = 2384), with a range of 13.3%-33.7% amongst 22 physician practices. An optimal decision tree was used to create a prediction model for the hospital overall, which defined 23 patient cohorts divided by 46 nodes. The model's performance for prediction of cesarean delivery is as follows: area under the curve 0.73, sensitivity 98.4%, specificity 16.1%, positive predictive value 83.7%, negative predictive value 70.6%. Comparisons with the overall hospital's specific-case adjusted benchmark groups revealed that several groups outperformed the overall hospital benchmark, and some practice groups underperformed in comparison to the overall hospital benchmark.

CONCLUSIONS

OCT benchmarking can assess physician practice-specific case-adjusted performance, both overall and clinical situation-specific, and can serve as a valuable tool for hospital self-assessment and quality improvement.

摘要

目的

利用机器学习方法为剖宫产术建立病例调整的医院特定绩效评估工具。

数据来源

使用美国伊利诺伊州一家医院的“电子数据仓库”数据库,从 2015 年 1 月 1 日至 2018 年 2 月 28 日收集了患者的二次数据。

研究设计

采用最优分类树 (OCT) 的机器学习方法来预测按医生组划分的剖宫产率,从而根据医院整体剖宫产率来制定病例调整的基准标准。预测每个参与实践的特定患者群体的结果,就好像每个患者都在整体医院环境中接受治疗一样。由此产生的 OCT 估计了医生组的预期剖宫产结果,包括总体结果和特定临床情况下的结果。

数据收集/提取方法:12841 例单胎、头位、足月分娩的患者,由分娩量≥50 例的实践机构负责。

主要发现

总体剖宫产率为 18.6%(n=2384),22 个医生实践中范围为 13.3%-33.7%。使用最优决策树为医院创建了一个预测模型,该模型定义了 23 个患者队列,分为 46 个节点。该模型预测剖宫产的性能如下:曲线下面积 0.73,灵敏度 98.4%,特异性 16.1%,阳性预测值 83.7%,阴性预测值 70.6%。与医院特定病例调整基准组的比较表明,一些组的表现优于医院整体基准,而一些实践组的表现则逊于医院整体基准。

结论

OCT 基准测试可以评估医生实践特定的病例调整绩效,包括总体绩效和特定临床情况绩效,并且可以作为医院自我评估和质量改进的有价值工具。

相似文献

3
Congenital Heart Surgery Machine Learning-Derived In-Depth Benchmarking Tool.先天性心脏病手术机器学习深度基准测试工具。
Ann Thorac Surg. 2024 Jul;118(1):199-206. doi: 10.1016/j.athoracsur.2023.10.034. Epub 2023 Dec 6.
4
Effect of severity of illness on cesarean delivery rates in Washington State.华盛顿州疾病严重程度对剖宫产率的影响。
Am J Obstet Gynecol. 2017 Oct;217(4):474.e1-474.e5. doi: 10.1016/j.ajog.2017.06.020. Epub 2017 Jun 27.
5
Prediction of vaginal birth after cesarean deliveries using machine learning.采用机器学习预测剖宫产术后阴道分娩。
Am J Obstet Gynecol. 2020 Jun;222(6):613.e1-613.e12. doi: 10.1016/j.ajog.2019.12.267. Epub 2020 Jan 30.
6
Assessing hospital differences in low-risk cesarean delivery metrics in Florida.评估佛罗里达州低风险剖宫产指标的医院差异。
Am J Obstet Gynecol. 2023 Dec;229(6):684.e1-684.e9. doi: 10.1016/j.ajog.2023.06.016. Epub 2023 Jun 14.

本文引用的文献

1
Adverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning Approach.先天性心脏病手术不良结局预测:机器学习方法。
World J Pediatr Congenit Heart Surg. 2021 Jul;12(4):453-460. doi: 10.1177/21501351211007106. Epub 2021 Apr 28.
9
Safe prevention of the primary cesarean delivery.安全预防初次剖宫产。
Am J Obstet Gynecol. 2014 Mar;210(3):179-93. doi: 10.1016/j.ajog.2014.01.026.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验