Suppr超能文献

来自HM1的硒纳米颗粒可作为人母乳中的一种新来源,对抗动物致病真菌。

Selenium nanoparticles from HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk.

作者信息

El-Saadony Mohamed T, Saad Ahmed M, Taha Taha F, Najjar Azhar A, Zabermawi Nidal M, Nader Maha M, AbuQamar Synan F, El-Tarabily Khaled A, Salama Ali

机构信息

Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.

Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.

出版信息

Saudi J Biol Sci. 2021 Dec;28(12):6782-6794. doi: 10.1016/j.sjbs.2021.07.059. Epub 2021 Jul 24.

Abstract

The current study was performed to develop a simple, safe, and cost-effective technique for the biosynthesis of selenium nanoparticles (SeNPs) from lactic acid bacteria (LAB) isolated from human breast milk with antifungal activity against animal pathogenic fungi. The LAB was selected based on their speed of transforming sodium selenite (NaSeO) to SeNPs. Out of the four identified LAB isolates, only one strain produced dark red color within 32 h of incubation, indicating that this isolate was the fastest in transforming NaSeO to SeNPs; and was chosen for the biosynthesis of LAB-SeNPs. The superior isolate was further identified as HM1 (MW390875) based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phylogenetic tree analysis of 16S rRNA sequence alignments. The optimum experimental conditions for the biosynthesis of SeNPs by HM1 were found to be pH (6.0), temperature (35˚C), NaSeO (4.0 mM), reaction time (32 h), and agitation speed (160 rpm). The ultraviolet absorbance of -SeNPs was detected at 300 nm, and the transmission electron microscopy (TEM) captured a diameter range between 3.0 and 50.0 nm. The energy-dispersive X-ray spectroscopy (EDX) and the Fourier-transform infrared spectroscopy (FTIR) provided a clear image of the active groups associated with the stability of -SeNPs. The size of -SeNPs using dynamic light scattering technique was 56.91 ± 1.8 nm, and zeta potential value was -20.1 ± 0.6 mV in one peak. The data also revealed that -SeNPs effectively inhibited the growth of and species, and this was further confirmed by scanning electron microscopy (SEM). The current study concluded that the SeNPs obtained from HM1 could be used to prepare biological antifungal formulations effective against major animal pathogenic fungi. The antifungal activity of the biologically synthesized SeNPs using HM1 outperforms the chemically produced SeNPs.  studies showing the antagonistic effect of SeNPs on pathogenic fungi are underway to demonstrate the potential of a therapeutic agent to treat animals against major infectious fungal diseases.

摘要

本研究旨在开发一种简单、安全且具有成本效益的技术,用于从人母乳中分离的具有抗动物致病真菌活性的乳酸菌(LAB)生物合成硒纳米颗粒(SeNPs)。根据乳酸菌将亚硒酸钠(NaSeO)转化为SeNPs的速度来选择乳酸菌。在鉴定出的四株乳酸菌分离物中,只有一株在培养32小时内产生深红色,表明该分离物将NaSeO转化为SeNPs的速度最快;并被选用于LAB-SeNPs的生物合成。基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)和16S rRNA序列比对的系统发育树分析,将优良分离物进一步鉴定为HM1(MW390875)。发现HM1生物合成SeNPs的最佳实验条件为pH(6.0)、温度(35˚C)、NaSeO(4.0 mM)、反应时间(32小时)和搅拌速度(160 rpm)。在300 nm处检测到SeNPs的紫外吸光度,透射电子显微镜(TEM)测得其直径范围在3.0至50.0 nm之间。能量色散X射线光谱(EDX)和傅里叶变换红外光谱(FTIR)清晰显示了与SeNPs稳定性相关的活性基团。使用动态光散射技术测得SeNPs的尺寸为56.91±1.8 nm,ζ电位值在一个峰中为-20.1±0.6 mV。数据还显示,SeNPs有效抑制了[具体真菌种类]的生长,扫描电子显微镜(SEM)进一步证实了这一点。本研究得出结论,从HM1获得的SeNPs可用于制备对主要动物致病真菌有效的生物抗真菌制剂。使用HM1生物合成的SeNPs的抗真菌活性优于化学合成的SeNPs。目前正在进行研究以显示SeNPs对致病真菌的拮抗作用,以证明其作为治疗剂治疗动物主要感染性真菌疾病的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e494/8626219/48228d351297/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验