Suppr超能文献

通过超快脉冲激光照射模糊石墨烯微电极对心肌细胞进行细胞内动作电位记录。

Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes.

作者信息

Dipalo Michele, Rastogi Sahil K, Matino Laura, Garg Raghav, Bliley Jacqueline, Iachetta Giuseppina, Melle Giovanni, Shrestha Ramesh, Shen Sheng, Santoro Francesca, Feinberg Adam W, Barbaglia Andrea, Cohen-Karni Tzahi, De Angelis Francesco

机构信息

Istituto Italiano di Tecnologia, Genova 16163, Italy.

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Sci Adv. 2021 Apr 7;7(15). doi: 10.1126/sciadv.abd5175. Print 2021 Apr.

Abstract

Graphene with its unique electrical properties is a promising candidate for carbon-based biosensors such as microelectrodes and field effect transistors. Recently, graphene biosensors were successfully used for extracellular recording of action potentials in electrogenic cells; however, intracellular recordings remain beyond their current capabilities because of the lack of an efficient cell poration method. Here, we present a microelectrode platform consisting of out-of-plane grown three-dimensional fuzzy graphene (3DFG) that enables recording of intracellular cardiac action potentials with high signal-to-noise ratio. We exploit the generation of hot carriers by ultrafast pulsed laser for porating the cell membrane and creating an intimate contact between the 3DFG electrodes and the intracellular domain. This approach enables us to detect the effects of drugs on the action potential shape of human-derived cardiomyocytes. The 3DFG electrodes combined with laser poration may be used for all-carbon intracellular microelectrode arrays to allow monitoring of the cellular electrophysiological state.

摘要

具有独特电学性质的石墨烯是基于碳的生物传感器(如微电极和场效应晶体管)的一个有前途的候选材料。最近,石墨烯生物传感器已成功用于电生细胞动作电位的细胞外记录;然而,由于缺乏有效的细胞穿孔方法,细胞内记录仍超出其当前能力范围。在此,我们展示了一个由面外生长的三维模糊石墨烯(3DFG)组成的微电极平台,该平台能够以高信噪比记录细胞内心脏动作电位。我们利用超快脉冲激光产生热载流子来使细胞膜穿孔,并在3DFG电极与细胞内区域之间建立紧密接触。这种方法使我们能够检测药物对人源心肌细胞动作电位形状的影响。结合激光穿孔的3DFG电极可用于全碳细胞内微电极阵列,以监测细胞电生理状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b710/8026128/ed56287773e7/abd5175-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验