Levato Riccardo, Lim Khoon S, Li Wanlu, Asua Ane Urigoitia, Peña Laura Blanco, Wang Mian, Falandt Marc, Bernal Paulina Nuñez, Gawlitta Debby, Zhang Yu Shrike, Woodfield Tim B F, Malda Jos
Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.
Department of Orthopaedics, University Medical Center Utrecht, the Netherlands.
Mater Today Bio. 2021 Nov 19;12:100162. doi: 10.1016/j.mtbio.2021.100162. eCollection 2021 Sep.
Biofabrication via light-based 3D printing offers superior resolution and ability to generate free-form architectures, compared to conventional extrusion technologies. While extensive efforts in the design of new hydrogel bioinks lead to major advances in extrusion methods, the accessibility of lithographic bioprinting is still hampered by a limited choice of cell-friendly resins. Herein, we report the development of a novel set of photoresponsive bioresins derived from ichthyic-origin gelatin, designed to print high-resolution hydrogel constructs with embedded convoluted networks of vessel-mimetic channels. Unlike mammalian gelatins, these materials display thermal stability as pre-hydrogel solutions at room temperature, ideal for bioprinting on any easily-accessible lithographic printer. Norbornene- and methacryloyl-modification of the gelatin backbone, combined with a ruthenium-based visible light photoinitiator and new coccine as a cytocompatible photoabsorber, allowed to print structures resolving single-pixel features (∼50 μm) with high shape fidelity, even when using low stiffness gels, ideal for cell encapsulation (1-2 kPa). Moreover, aqueous two-phase emulsion bioresins allowed to modulate the permeability of the printed hydrogel bulk. Bioprinted mesenchymal stromal cells displayed high functionality over a month of culture, and underwent multi-lineage differentiation while colonizing the bioresin bulk with tissue-specific neo-deposited extracellular matrix. Importantly, printed hydrogels embedding complex channels with perfusable lumen (diameter <200 μm) were obtained, replicating anatomical 3D networks with out-of-plane branches ( brain vessels) that cannot otherwise be reproduced by extrusion bioprinting. This versatile bioresin platform opens new avenues for the widespread adoption of lithographic biofabrication, and for bioprinting complex channel-laden constructs with envisioned applications in regenerative medicine and hydrogel-based organ-on-a-chip devices.
与传统挤出技术相比,基于光的3D打印生物制造具有更高的分辨率和生成自由形式结构的能力。虽然在新型水凝胶生物墨水设计方面的大量努力推动了挤出方法的重大进展,但光刻生物打印的可及性仍然受到细胞友好型树脂选择有限的阻碍。在此,我们报告了一组源自鱼源明胶的新型光响应生物树脂的开发,该树脂旨在打印具有嵌入的仿血管通道复杂网络的高分辨率水凝胶结构。与哺乳动物明胶不同,这些材料在室温下作为预水凝胶溶液具有热稳定性,非常适合在任何易于使用的光刻打印机上进行生物打印。明胶主链的降冰片烯和甲基丙烯酰基修饰,与基于钌的可见光光引发剂和新型胭脂红作为细胞相容性光吸收剂相结合,即使使用低刚度凝胶(1-2 kPa,非常适合细胞封装),也能够以高形状保真度打印出分辨率为单像素特征(约50μm)的结构。此外,水相双乳液生物树脂能够调节打印水凝胶整体的渗透性。生物打印的间充质基质细胞在一个月的培养过程中表现出高功能性,并在通过组织特异性新沉积的细胞外基质定殖于生物树脂整体时进行多谱系分化。重要的是,获得了嵌入具有可灌注内腔(直径<200μm)的复杂通道的打印水凝胶,复制了具有平面外分支(脑血管)的解剖学3D网络,而这是挤出生物打印无法实现的。这个多功能生物树脂平台为光刻生物制造的广泛应用以及生物打印具有复杂通道的结构开辟了新途径,这些结构有望应用于再生医学和基于水凝胶的芯片器官装置。