U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park (EPA-RTP), Durham, North Carolina, USA.
U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA.
J Air Waste Manag Assoc. 2022 Apr;72(4):309-318. doi: 10.1080/10962247.2021.2009935. Epub 2022 Feb 11.
Concentrations of per- and poly-fluoroalkyl substances (PFAS) present in wastewater treatment biosolids are a growing concern. Pyrolysis is a thermal treatment technology for biosolids that can produce a useful biochar product with reduced levels of PFAS and other contaminants. In August 2020, a limited-scope study investigated target PFAS removal of a commercial pyrolysis system processing biosolid with the analysis of 41 target PFAS compounds in biosolids and biochar performed by two independent laboratories. The concentrations of 21 detected target compounds in the input biosolids ranged between approximately 2 µg/kg and 85 µg/kg. No PFAS compounds were detected in the biochar. The PFAS concentrations in the biochar were assumed to equal the compounds' minimum detection limits (MDLs). The pyrolysis system's target PFAS removal efficiencies (REs) were estimated to range between >81.3% and >99.9% (mean >97.4%) with the lowest REs being associated with the lowest detected PFAS concentrations and the highest MDLs. No information on non-target PFAS compounds in influent or effluent media or products of incomplete combustion was considered. Selected gaseous emissions were measured by Fourier transform infrared spectroscopy and gas chromatography time-of-flight mass spectrometry to provide additional information on air emissions after process controls. This limited-scope study indicated that additional research to further understand this process is warranted.: Development of alternative approaches to manage PFAS-impacted biosolids is of emerging international importance. A commercially operating biosolid pyrolysis process was shown to lower target PFAS levels in produced biochar. Additional research is warranted to understand all potential PFAS transformation emission routes and optimal air pollution emissions control strategies for this technology class.
废水中处理生物固体中的全氟和多氟烷基物质(PFAS)浓度是一个日益引起关注的问题。热解是一种用于生物固体的热处理技术,它可以生产出具有较低 PFAS 和其他污染物水平的有用生物炭产品。2020 年 8 月,一项有限范围的研究调查了商业热解系统处理生物固体时的目标 PFAS 去除情况,对生物固体和生物炭中的 41 种目标 PFAS 化合物进行了分析,由两个独立的实验室进行。输入生物固体中 21 种检测到的目标化合物的浓度在约 2μg/kg 至 85μg/kg 之间。生物炭中未检测到 PFAS 化合物。生物炭中的 PFAS 浓度被假定为等于化合物的最小检测限(MDL)。该热解系统的目标 PFAS 去除效率(RE)估计在>81.3%至>99.9%之间(平均值>97.4%),最低的 RE 与检测到的最低 PFAS 浓度和最高 MDL 相关。没有考虑进水或出水介质或不完全燃烧产物中的非目标 PFAS 化合物的信息。通过傅里叶变换红外光谱法和气相色谱飞行时间质谱法测量了选定的气态排放物,以提供工艺控制后空气排放的其他信息。这项有限范围的研究表明,有必要进行进一步的研究,以进一步了解这一过程:开发替代方法来管理受 PFAS 影响的生物固体,这在国际上变得越来越重要。已证明商业运营的生物固体热解工艺可降低所生产生物炭中的目标 PFAS 水平。有必要进行进一步的研究,以了解该技术类别的所有潜在 PFAS 转化排放途径和最佳空气污染排放控制策略。