Suppr超能文献

通过动力学型反应方法建模封锁和隔离措施存在下 SARS-CoV-2 的传播。

Modelling the spreading of the SARS-CoV-2 in presence of the lockdown and quarantine measures by a kinetic-type reactions approach.

机构信息

Université Libre de Bruxelles (ULB), Faculté de Sciences Bvd du Triomphe, Campus Plaine CP 231, 1050 Brussels, Belgium.

出版信息

Math Med Biol. 2022 Jun 11;39(2):105-125. doi: 10.1093/imammb/dqab017.

Abstract

We propose a realistic model for the evolution of the COVID-19 pandemic subject to the lockdown and quarantine measures, which takes into account the timedelay for recovery or death processes. The dynamic equations for the entire process are derived by adopting a kinetic-type reactions approach. More specifically, the lockdown and the quarantine measures are modelled by some kind of inhibitor reactions where susceptible and infected individuals can be trapped into inactive states. The dynamics for the recovered people is obtained by accounting people who are only traced back to hospitalized infected people. To get the evolution equation we take inspiration from the Michaelis Menten's enzyme-substrate reaction model (the so-called MM reaction) where the enzyme is associated to the available hospital beds, the substrate to the infected people, and the product to the recovered people, respectively. In other words, everything happens as if the hospitals beds act as a catalyzer in the hospital recovery process. Of course, in our case, the reverse MM reaction has no sense in our case and, consequently, the kinetic constant is equal to zero. Finally, the ordinary differential equations (ODEs) for people tested positive to COVID-19 is simply modelled by the following kinetic scheme $S+I\Rightarrow 2I$ with $I\Rightarrow R$ or $I\Rightarrow D$, with $S$, $I$, $R$ and $D$ denoting the compartments susceptible, infected, recovered and deceased people, respectively. The resulting kinetic-type equations provide the ODEs, for elementary reaction steps, describing the number of the infected people, the total number of the recovered people previously hospitalized, subject to the lockdown and the quarantine measure and the total number of deaths. The model foresees also the second wave of infection by coronavirus. The tests carried out on real data for Belgium, France and Germany confirmed the correctness of our model.

摘要

我们提出了一个现实的 COVID-19 大流行演变模型,该模型考虑了恢复或死亡过程的时滞,同时还考虑了封锁和检疫措施。采用动力学型反应方法推导出整个过程的动态方程。更具体地说,通过某种抑制剂反应来模拟封锁和检疫措施,使易感者和感染者可以被困在非活跃状态。通过考虑仅追溯到住院感染者的人来获得康复者的动态。为了得到演化方程,我们从 Michaelis-Menten 的酶-底物反应模型(所谓的 MM 反应)中获得灵感,其中酶与可用的医院床位相关联,底物与感染者相关联,产物与康复者相关联。换句话说,就好像医院床位在医院康复过程中充当了催化剂。当然,在我们的情况下,反向 MM 反应在我们的情况下没有意义,因此动力学常数等于零。最后,将 COVID-19 检测呈阳性的人的常微分方程(ODE)简单地建模为以下动力学方案$S+I\Rightarrow 2I$,其中$I\Rightarrow R$或$I\Rightarrow D$,其中$S$、$I$、$R$和$D$分别表示易感者、感染者、康复者和死亡者的隔室。产生的动力学型方程为基本反应步骤提供了 ODE,用于描述感染者数量、之前住院的康复者总数、封锁和检疫措施以及死亡总数。该模型还预测了冠状病毒的第二波感染。对比利时、法国和德国的实际数据进行的测试证实了我们模型的正确性。

相似文献

3
Evaluating the impact of stay-at-home and quarantine measures on COVID-19 spread.
BMC Infect Dis. 2022 Jul 27;22(1):648. doi: 10.1186/s12879-022-07636-4.
4
Is Lockdown Effective in Limiting SARS-CoV-2 Epidemic Progression?-a Cross-Country Comparative Evaluation Using Epidemiokinetic Tools.
J Gen Intern Med. 2021 Mar;36(3):746-752. doi: 10.1007/s11606-020-06345-5. Epub 2021 Jan 13.
5
How and When to End the COVID-19 Lockdown: An Optimization Approach.
Front Public Health. 2020 Jun 10;8:262. doi: 10.3389/fpubh.2020.00262. eCollection 2020.
7
Could masks curtail the post-lockdown resurgence of COVID-19 in the US?
Math Biosci. 2020 Nov;329:108452. doi: 10.1016/j.mbs.2020.108452. Epub 2020 Aug 18.
9
A Recursive Model of the Spread of COVID-19: Modelling Study.
JMIR Public Health Surveill. 2021 Apr 19;7(4):e21468. doi: 10.2196/21468.
10
Effectiveness of preventive measures against COVID-19: A systematic review of modeling studies in indian context.
Indian J Public Health. 2020 Jun;64(Supplement):S156-S167. doi: 10.4103/ijph.IJPH_464_20.

本文引用的文献

1
A review on COVID-19 forecasting models.
Neural Comput Appl. 2021 Feb 4:1-11. doi: 10.1007/s00521-020-05626-8.
2
Explicit Treatment of Non-Michaelis-Menten and Atypical Kinetics in Early Drug Discovery*.
ChemMedChem. 2021 Mar 18;16(6):899-918. doi: 10.1002/cmdc.202000791. Epub 2020 Dec 28.
3
A time-varying SIRD model for the COVID-19 contagion in Italy.
Annu Rev Control. 2020;50:361-372. doi: 10.1016/j.arcontrol.2020.10.005. Epub 2020 Oct 26.
4
Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art.
SN Comput Sci. 2020;1(4):197. doi: 10.1007/s42979-020-00209-9. Epub 2020 Jun 11.
5
Model predictive control to mitigate the COVID-19 outbreak in a multi-region scenario.
Annu Rev Control. 2020;50:373-393. doi: 10.1016/j.arcontrol.2020.09.005. Epub 2020 Oct 1.
6
Words of advice: teaching enzyme kinetics.
FEBS J. 2021 Apr;288(7):2068-2083. doi: 10.1111/febs.15537. Epub 2020 Sep 27.
7
Second wave COVID-19 pandemics in Europe: a temporal playbook.
Sci Rep. 2020 Sep 23;10(1):15514. doi: 10.1038/s41598-020-72611-5.
8
COVID-19 and SARS-CoV-2. Modeling the present, looking at the future.
Phys Rep. 2020 Jul 10;869:1-51. doi: 10.1016/j.physrep.2020.07.005. Epub 2020 Jul 28.
9
Coronavirus Disease 2019 (COVID-19): Forecast of an Emerging Urgency in Pakistan.
Cureus. 2020 May 28;12(5):e8346. doi: 10.7759/cureus.8346.
10
Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming.
Chaos Solitons Fractals. 2020 Sep;138:109945. doi: 10.1016/j.chaos.2020.109945. Epub 2020 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验