控制细菌生长的空间组织揭示了细胞丝状化在木霉快速生物膜形成之前的关键作用。
Controlled spatial organization of bacterial growth reveals key role of cell filamentation preceding Xylella fastidiosa biofilm formation.
机构信息
Institute of Physics "Gleb Wataghin", University of Campinas, 13083-859, Campinas, São Paulo, Brazil.
Citrus Center APTA "Sylvio Moreira" Agronomic Institute of Campinas, 13490-970, Cordeirópolis, São Paulo, Brazil.
出版信息
NPJ Biofilms Microbiomes. 2021 Dec 7;7(1):86. doi: 10.1038/s41522-021-00258-9.
The morphological plasticity of bacteria to form filamentous cells commonly represents an adaptive strategy induced by stresses. In contrast, for diverse human and plant pathogens, filamentous cells have been recently observed during biofilm formation, but their functions and triggering mechanisms remain unclear. To experimentally identify the underlying function and hypothesized cell communication triggers of such cell morphogenesis, spatially controlled cell patterning is pivotal. Here, we demonstrate highly selective cell adhesion of the biofilm-forming phytopathogen Xylella fastidiosa to gold-patterned SiO substrates with well-defined geometries and dimensions. The consequent control of both cell density and distances between cell clusters demonstrated that filamentous cell formation depends on cell cluster density, and their ability to interconnect neighboring cell clusters is distance-dependent. This process allows the creation of large interconnected cell clusters that form the structural framework for macroscale biofilms. The addition of diffusible signaling molecules from supernatant extracts provides evidence that cell filamentation is induced by quorum sensing. These findings and our innovative platform could facilitate therapeutic developments targeting biofilm formation mechanisms of X. fastidiosa and other pathogens.
细菌形态可塑性形成丝状细胞通常代表一种由应激诱导的适应性策略。相比之下,对于不同的人类和植物病原体,丝状细胞最近在生物膜形成过程中被观察到,但它们的功能和触发机制仍不清楚。为了在实验中确定这种细胞形态发生的潜在功能和假设的细胞通信触发因素,空间控制的细胞模式形成至关重要。在这里,我们展示了生物膜形成的植物病原体 Xylella fastidiosa 对具有明确定义的几何形状和尺寸的金图案化 SiO 衬底的高度选择性细胞附着。由此对细胞密度和细胞簇之间距离的控制表明,丝状细胞的形成取决于细胞簇密度,并且它们相互连接相邻细胞簇的能力取决于距离。这个过程允许形成大的互连细胞簇,这些细胞簇形成宏观生物膜的结构框架。从上清液提取物中添加可扩散的信号分子提供了证据,表明群体感应诱导了细胞丝状化。这些发现和我们的创新平台可以促进针对 X. fastidiosa 和其他病原体生物膜形成机制的治疗性发展。