Song Su-Beom, Yoon Sangho, Kim So Young, Yang Sera, Seo Seung-Young, Cha Soonyoung, Jeong Hyeon-Woo, Watanabe Kenji, Taniguchi Takashi, Lee Gil-Ho, Kim Jun Sung, Jo Moon-Ho, Kim Jonghwan
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea.
Nat Commun. 2021 Dec 8;12(1):7134. doi: 10.1038/s41467-021-27524-w.
Hexagonal boron nitride (hBN) is a van der Waals semiconductor with a wide bandgap of ~ 5.96 eV. Despite the indirect bandgap characteristics of hBN, charge carriers excited by high energy electrons or photons efficiently emit luminescence at deep-ultraviolet (DUV) frequencies via strong electron-phonon interaction, suggesting potential DUV light emitting device applications. However, electroluminescence from hBN has not been demonstrated at DUV frequencies so far. In this study, we report DUV electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures at room temperature. Tunneling carrier injection from graphene electrodes into the band edges of hBN enables prominent electroluminescence at DUV frequencies. On the other hand, under DUV laser illumination and external bias voltage, graphene electrodes efficiently collect photo-excited carriers in hBN, which generates high photocurrent. Laser excitation micro-spectroscopy shows that the radiative recombination and photocarrier excitation processes in the heterostructures mainly originate from the pristine structure and the stacking faults in hBN. Our work provides a pathway toward efficient DUV light emitting and detection devices based on hBN.
六方氮化硼(hBN)是一种范德华半导体,具有约5.96 eV的宽带隙。尽管hBN具有间接带隙特性,但高能电子或光子激发的电荷载流子通过强电子-声子相互作用在深紫外(DUV)频率下有效地发光,这表明其在DUV发光器件方面具有潜在应用。然而,到目前为止,尚未在DUV频率下证明hBN的电致发光。在本研究中,我们报道了室温下石墨烯/hBN/石墨烯异质结构中的DUV电致发光和光电流产生。从石墨烯电极到hBN带边的隧穿载流子注入能够在DUV频率下实现显著的电致发光。另一方面,在DUV激光照射和外部偏置电压下,石墨烯电极有效地收集hBN中的光激发载流子,从而产生高光电流。激光激发显微光谱表明,异质结构中的辐射复合和光载流子激发过程主要源于hBN中的原始结构和堆垛层错。我们的工作为基于hBN的高效DUV发光和检测器件提供了一条途径。