Suppr超能文献

对加速度计进行解码,以对患有严重脑损伤的危重病人进行分类和预测。

Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury.

机构信息

Laboratory of Computational Intensive Care Medicine, Johns Hopkins University, Baltimore, MD, USA.

Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.

出版信息

Sci Rep. 2021 Dec 8;11(1):23654. doi: 10.1038/s41598-021-02974-w.

Abstract

Our goal is to explore quantitative motor features in critically ill patients with severe brain injury (SBI). We hypothesized that computational decoding of these features would yield information on underlying neurological states and outcomes. Using wearable microsensors placed on all extremities, we recorded a median 24.1 (IQR: 22.8-25.1) hours of high-frequency accelerometry data per patient from a prospective cohort (n = 69) admitted to the ICU with SBI. Models were trained using time-, frequency-, and wavelet-domain features and levels of responsiveness and outcome as labels. The two primary tasks were detection of levels of responsiveness, assessed by motor sub-score of the Glasgow Coma Scale (GCSm), and prediction of functional outcome at discharge, measured with the Glasgow Outcome Scale-Extended (GOSE). Detection models achieved significant (AUC: 0.70 [95% CI: 0.53-0.85]) and consistent (observation windows: 12 min-9 h) discrimination of SBI patients capable of purposeful movement (GCSm > 4). Prediction models accurately discriminated patients of upper moderate disability or better (GOSE > 5) with 2-6 h of observation (AUC: 0.82 [95% CI: 0.75-0.90]). Results suggest that time series analysis of motor activity yields clinically relevant insights on underlying functional states and short-term outcomes in patients with SBI.

摘要

我们的目标是探索患有严重脑损伤(SBI)的重症患者的定量运动特征。我们假设对这些特征进行计算解码将提供有关潜在神经状态和结果的信息。我们使用放置在所有四肢上的可穿戴微传感器,从接受 SBI 治疗的 ICU 患者前瞻性队列(n = 69)中记录了中位数为 24.1(IQR:22.8-25.1)小时的高频加速度计数据。使用时间、频率和小波域特征以及响应水平和结果作为标签来训练模型。两项主要任务是检测响应水平,通过格拉斯哥昏迷量表(GCSm)的运动子评分评估,以及预测出院时的功能结果,使用格拉斯哥结局量表扩展版(GOSE)测量。检测模型在能够进行有目的运动(GCSm>4)的 SBI 患者中实现了显著(AUC:0.70 [95%CI:0.53-0.85])和一致(观察窗口:12 分钟-9 小时)的区分。预测模型能够准确区分具有中上残疾或更好(GOSE>5)的患者,观察时间为 2-6 小时(AUC:0.82 [95%CI:0.75-0.90])。结果表明,运动活动的时间序列分析可提供有关 SBI 患者潜在功能状态和短期结果的临床相关见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4b/8654973/aa4188745cd9/41598_2021_2974_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验