Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA.
Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
Neurocrit Care. 2023 Feb;38(1):118-128. doi: 10.1007/s12028-022-01586-0. Epub 2022 Sep 15.
Impaired consciousness is common in intensive care unit (ICU) patients, and an individual's degree of consciousness is crucial to determining their care and prognosis. However, there are no methods that continuously monitor consciousness and alert clinicians to changes. We investigated the use of physiological signals collected in the ICU to classify levels of consciousness in critically ill patients.
We studied 61 patients with subarachnoid hemorrhage (SAH) and 178 patients with intracerebral hemorrhage (ICH) from the neurological ICU at Columbia University Medical Center in a retrospective observational study of prospectively collected data. The level of consciousness was determined on the basis of neurological examination and mapped to comatose, vegetative state or unresponsive wakefulness syndrome (VS/UWS), minimally conscious minus state (MCS-), and command following. For each physiological signal, we extracted time-series features and performed classification using extreme gradient boosting on multiple clinically relevant tasks across subsets of physiological signals. We applied this approach independently on both SAH and ICH patient groups for three sets of variables: (1) a minimal set common to most hospital patients (e.g., heart rate), (2) variables available in most ICUs (e.g., body temperature), and (3) an extended set recorded mainly in neurological ICUs (absent for the ICH patient group; e.g., brain temperature).
On the commonly performed classification task of VS/UWS versus MCS-, we achieved an area under the receiver operating characteristic curve (AUROC) in the SAH patient group of 0.72 (sensitivity 82%, specificity 57%; 95% confidence interval [CI] 0.63-0.81) using the extended set, 0.69 (sensitivity 83%, specificity 51%; 95% CI 0.59-0.78) on the variable set available in most ICUs, and 0.69 (sensitivity 56%, specificity 78%; 95% CI 0.60-0.78) on the minimal set. In the ICH patient group, AUROC was 0.64 (sensitivity 56%, specificity 65%; 95% CI 0.55-0.74) using the minimal set and 0.61 (sensitivity 50%, specificity 80%; 95% CI 0.51-0.71) using the variables available in most ICUs.
We find that physiological signals can be used to classify states of consciousness for patients in the ICU. Building on this with intraday assessments and increasing sensitivity and specificity may enable alarm systems that alert physicians to changes in consciousness and frequent monitoring of consciousness throughout the day, both of which may improve patient care and outcomes.
意识障碍在重症监护病房(ICU)患者中很常见,个体的意识程度对于确定其护理和预后至关重要。然而,目前还没有可以连续监测意识并提醒临床医生意识变化的方法。我们研究了使用 ICU 中采集的生理信号来对危重症患者的意识水平进行分类。
我们对哥伦比亚大学医学中心神经科 ICU 的 61 例蛛网膜下腔出血(SAH)患者和 178 例脑出血(ICH)患者进行了回顾性观察性研究,前瞻性收集的数据。根据神经系统检查确定意识水平,并映射为昏迷、植物状态或无反应性觉醒综合征(VS/UWS)、最小意识状态 minus 型(MCS-)和命令跟随。对于每个生理信号,我们提取时间序列特征,并使用极端梯度增强在多个生理信号子集上的多个临床相关任务中进行分类。我们分别在 SAH 和 ICH 患者组上应用此方法,共使用了三组变量:(1)大多数医院患者常见的最小集合(例如,心率),(2)大多数 ICU 中可用的变量(例如,体温),以及(3)主要在神经科 ICU 中记录的扩展集合(ICH 患者组中不存在;例如,脑温)。
在最常见的 VS/UWS 与 MCS-的分类任务中,我们在 SAH 患者组中使用扩展集获得了接收器操作特征曲线下面积(AUROC)为 0.72(敏感性 82%,特异性 57%;95%置信区间 [CI] 0.63-0.81),在大多数 ICU 中可用的变量集中获得了 0.69(敏感性 83%,特异性 51%;95% CI 0.59-0.78),在最小集中获得了 0.69(敏感性 56%,特异性 78%;95% CI 0.60-0.78)。在 ICH 患者组中,使用最小集时 AUROC 为 0.64(敏感性 56%,特异性 65%;95% CI 0.55-0.74),使用大多数 ICU 中可用的变量集时 AUROC 为 0.61(敏感性 50%,特异性 80%;95% CI 0.51-0.71)。
我们发现生理信号可用于对 ICU 患者的意识状态进行分类。在此基础上进行日内评估并提高敏感性和特异性,可能能够构建用于提醒医生意识变化的警报系统,并实现全天频繁监测意识,这两者均可能改善患者护理和预后。