Suppr超能文献

基于 Saab 变换的连续子空间学习对 Cine MRI 中的心脏结构进行分割。

Segmentation of Cardiac Structures via Successive Subspace Learning with Saab Transform from Cine MRI.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3535-3538. doi: 10.1109/EMBC46164.2021.9629770.

Abstract

Assessment of cardiovascular disease (CVD) with cine magnetic resonance imaging (MRI) has been used to non-invasively evaluate detailed cardiac structure and function. Accurate segmentation of cardiac structures from cine MRI is a crucial step for early diagnosis and prognosis of CVD, and has been greatly improved with convolutional neural networks (CNN). There, however, are a number of limitations identified in CNN models, such as limited interpretability and high complexity, thus limiting their use in clinical practice. In this work, to address the limitations, we propose a lightweight and interpretable machine learning model, successive subspace learning with the subspace approximation with adjusted bias (Saab) transform, for accurate and efficient segmentation from cine MRI. Specifically, our segmentation framework is comprised of the following steps: (1) sequential expansion of near-to-far neighborhood at different resolutions; (2) channel-wise subspace approximation using the Saab transform for unsupervised dimension reduction; (3) class-wise entropy guided feature selection for supervised dimension reduction; (4) concatenation of features and pixel-wise classification with gradient boost; and (5) conditional random field for post-processing. Experimental results on the ACDC 2017 segmentation database, showed that our framework performed better than state-of-the-art U-Net models with 200× fewer parameters in delineating the left ventricle, right ventricle, and myocardium, thus showing its potential to be used in clinical practice.Clinical relevance- Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac MR images is a common clinical task to establish diagnosis and prognosis of CVD.

摘要

利用电影磁共振成像(MRI)评估心血管疾病(CVD)已被用于非侵入性地评估心脏的详细结构和功能。从电影 MRI 中准确分割心脏结构是 CVD 早期诊断和预后的关键步骤,卷积神经网络(CNN)已经极大地提高了这一过程。然而,CNN 模型存在许多局限性,例如可解释性有限和复杂性高,因此限制了它们在临床实践中的应用。在这项工作中,为了解决这些局限性,我们提出了一种轻量级且可解释的机器学习模型,即带有调整偏差的子空间近似(Saab)变换的连续子空间学习,用于从电影 MRI 中进行准确高效的分割。具体来说,我们的分割框架包括以下步骤:(1)在不同分辨率下扩展近到远的邻域;(2)使用 Saab 变换进行通道子空间近似,实现无监督降维;(3)基于类别的熵引导特征选择,实现监督降维;(4)将特征连接起来,并使用梯度提升进行像素级分类;(5)使用条件随机场进行后处理。在 ACDC 2017 分割数据库上的实验结果表明,我们的框架在勾画左心室、右心室和心肌方面的表现优于最先进的 U-Net 模型,参数量减少了 200 倍,因此具有在临床实践中应用的潜力。

临床相关性-从心脏磁共振图像中勾画左心室腔、心肌和右心室是一项常见的临床任务,可用于建立 CVD 的诊断和预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验