Suppr超能文献

基于黑箱源模型的无监督域自适应分割

Unsupervised Domain Adaptation for Segmentation with Black-box Source Model.

作者信息

Liu Xiaofeng, Yoo Chaehwa, Xing Fangxu, Kuo C-C Jay, El Fakhri Georges, Kang Je-Won, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Dept. of Electronic and Electrical Engineering and Graduate Program in Smart Factory, Ewha Womans University, Seoul, South Korea.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2607895. Epub 2022 Apr 4.

Abstract

Unsupervised domain adaptation (UDA) has been widely used to transfer knowledge from a labeled source domain to an unlabeled target domain to counter the difficulty of labeling in a new domain. The training of conventional solutions usually relies on the existence of both source and target domain data. However, privacy of the large-scale and well-labeled data in the source domain and trained model parameters can become the major concern of cross center/domain collaborations. In this work, to address this, we propose a practical solution to UDA for segmentation with a black-box segmentation model trained in the source domain only, rather than original source data or a white-box source model. Specifically, we resort to a knowledge distillation scheme with exponential mixup decay (EMD) to gradually learn target-specific representations. In addition, unsupervised entropy minimization is further applied to regularization of the target domain confidence. We evaluated our framework on the BraTS 2018 database, achieving performance on par with white-box source model adaptation approaches.

摘要

无监督域适应(UDA)已被广泛用于将知识从有标签的源域转移到无标签的目标域,以应对新域中标记的困难。传统解决方案的训练通常依赖于源域和目标域数据的存在。然而,源域中大规模且标注良好的数据以及训练模型参数的隐私可能成为跨中心/域协作的主要关注点。在这项工作中,为了解决这个问题,我们提出了一种针对UDA分割的实用解决方案,该方案仅使用在源域中训练的黑盒分割模型,而不是原始源数据或白盒源模型。具体来说,我们采用了一种带有指数混合衰减(EMD)的知识蒸馏方案来逐步学习特定于目标的表示。此外,无监督熵最小化进一步应用于目标域置信度的正则化。我们在BraTS 2018数据库上评估了我们的框架,其性能与白盒源模型适应方法相当。

相似文献

1
Unsupervised Domain Adaptation for Segmentation with Black-box Source Model.基于黑箱源模型的无监督域自适应分割
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2607895. Epub 2022 Apr 4.
2
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation.用于脑肿瘤分割的无监督黑箱模型域适应
Front Neurosci. 2022 Jun 2;16:837646. doi: 10.3389/fnins.2022.837646. eCollection 2022.
3
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
8
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.ACT:基于不对称协同训练的半监督域自适应医学图像分割
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.

本文引用的文献

2
Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine MRI Synthesis.用于跨域无监督标记到电影MRI合成的生成式自训练
Med Image Comput Comput Assist Interv. 2021;12903:138-148. doi: 10.1007/978-3-030-87199-4_13. Epub 2021 Sep 21.
3
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
7
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验