Wu Huali, Li Ji, Qi Kun, Zhang Yang, Petit Eddy, Wang Wensen, Flaud Valérie, Onofrio Nicolas, Rebiere Bertrand, Huang Lingqi, Salameh Chrystelle, Lajaunie Luc, Miele Philippe, Voiry Damien
Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier, 34000, France.
College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China.
Nat Commun. 2021 Dec 10;12(1):7210. doi: 10.1038/s41467-021-27456-5.
The conversion of CO into desirable multicarbon products via the electrochemical reduction reaction holds promise to achieve a circular carbon economy. Here, we report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO into hydrocarbon molecules. By combining operando Raman and X-ray absorption spectroscopy with electrocatalytic measurements and analysis of the reaction products, we identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst by adjusting the electronic state of surface copper atoms. As a result, we achieve a high Faradaic efficiency for the C formation of ≈80% and full-cell energy efficiency of 20.3% with a specific current density of 261.4 mA cm for C products.
通过电化学还原反应将一氧化碳转化为所需的多碳产物有望实现循环碳经济。在此,我们报告了一种策略,即我们用噻二唑和三唑衍生物等芳香杂环修饰双金属银铜催化剂的表面,以提高一氧化碳向烃类分子的转化。通过将原位拉曼光谱和X射线吸收光谱与电催化测量及反应产物分析相结合,我们确定官能团的吸电子性质使反应途径朝向碳物种(乙醇和乙烯)的生成,并通过调节表面铜原子的电子态提高催化剂表面的反应速率。结果,我们实现了约80%的碳形成法拉第效率和20.3%的全电池能量效率,碳产物的比电流密度为261.4 mA cm。