Suppr超能文献

一种高效多模态卷积神经网络在多发性硬化病变检测中的研究。

Investigation of an efficient multi-modal convolutional neural network for multiple sclerosis lesion detection.

机构信息

Computational Intelligence and Machine Learning Group, University of Regensburg, 93051, Regensburg, Germany.

Experimental Psychology, University of Regensburg, Regensburg, 93051, Germany.

出版信息

Sci Rep. 2023 Nov 30;13(1):21154. doi: 10.1038/s41598-023-48578-4.

Abstract

In this study, an automated 2D machine learning approach for fast and precise segmentation of MS lesions from multi-modal magnetic resonance images (mmMRI) is presented. The method is based on an U-Net like convolutional neural network (CNN) for automated 2D slice-based-segmentation of brain MRI volumes. The individual modalities are encoded in separate downsampling branches without weight sharing, to leverage the specific features. Skip connections input feature maps to multi-scale feature fusion (MSFF) blocks at every decoder stage of the network. Those are followed by multi-scale feature upsampling (MSFU) blocks which use the information about lesion shape and location. The CNN is evaluated on two publicly available datasets: The ISBI 2015 longitudinal MS lesion segmentation challenge dataset containing 19 subjects and the MICCAI 2016 MSSEG challenge dataset containing 15 subjects from various scanners. The proposed multi-input 2D architecture is among the top performing approaches in the ISBI challenge, to which open-access papers are available, is able to outperform state-of-the-art 3D approaches without additional post-processing, can be adapted to other scanners quickly, is robust against scanner variability and can be deployed for inference even on a standard laptop without a dedicated GPU.

摘要

在这项研究中,提出了一种用于从多模态磁共振图像(mmMRI)中快速准确分割 MS 病变的自动化二维机器学习方法。该方法基于类似于 U-Net 的卷积神经网络(CNN),用于自动进行基于二维切片的脑 MRI 体积分割。单独的模态在没有权重共享的情况下编码在单独的下采样分支中,以利用特定的特征。跳过连接将特征图输入到网络的每个解码器阶段的多尺度特征融合(MSFF)块中。这些特征融合块后面是多尺度特征上采样(MSFU)块,它们利用关于病变形状和位置的信息。该 CNN 在两个公开可用的数据集上进行了评估:包含 19 个受试者的 ISBI 2015 纵向 MS 病变分割挑战赛数据集和包含来自不同扫描仪的 15 个受试者的 MICCAI 2016 MSSEG 挑战赛数据集。所提出的多输入二维架构在 ISBI 挑战赛中表现出色,其中可获得公开访问的论文,能够在不进行额外后处理的情况下超越最先进的 3D 方法,能够快速适应其他扫描仪,对扫描仪变化具有鲁棒性,甚至可以在没有专用 GPU 的标准笔记本电脑上进行推理部署。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验