Computational Intelligence and Machine Learning Group, University of Regensburg, 93051, Regensburg, Germany.
Experimental Psychology, University of Regensburg, Regensburg, 93051, Germany.
Sci Rep. 2023 Nov 30;13(1):21154. doi: 10.1038/s41598-023-48578-4.
In this study, an automated 2D machine learning approach for fast and precise segmentation of MS lesions from multi-modal magnetic resonance images (mmMRI) is presented. The method is based on an U-Net like convolutional neural network (CNN) for automated 2D slice-based-segmentation of brain MRI volumes. The individual modalities are encoded in separate downsampling branches without weight sharing, to leverage the specific features. Skip connections input feature maps to multi-scale feature fusion (MSFF) blocks at every decoder stage of the network. Those are followed by multi-scale feature upsampling (MSFU) blocks which use the information about lesion shape and location. The CNN is evaluated on two publicly available datasets: The ISBI 2015 longitudinal MS lesion segmentation challenge dataset containing 19 subjects and the MICCAI 2016 MSSEG challenge dataset containing 15 subjects from various scanners. The proposed multi-input 2D architecture is among the top performing approaches in the ISBI challenge, to which open-access papers are available, is able to outperform state-of-the-art 3D approaches without additional post-processing, can be adapted to other scanners quickly, is robust against scanner variability and can be deployed for inference even on a standard laptop without a dedicated GPU.
在这项研究中,提出了一种用于从多模态磁共振图像(mmMRI)中快速准确分割 MS 病变的自动化二维机器学习方法。该方法基于类似于 U-Net 的卷积神经网络(CNN),用于自动进行基于二维切片的脑 MRI 体积分割。单独的模态在没有权重共享的情况下编码在单独的下采样分支中,以利用特定的特征。跳过连接将特征图输入到网络的每个解码器阶段的多尺度特征融合(MSFF)块中。这些特征融合块后面是多尺度特征上采样(MSFU)块,它们利用关于病变形状和位置的信息。该 CNN 在两个公开可用的数据集上进行了评估:包含 19 个受试者的 ISBI 2015 纵向 MS 病变分割挑战赛数据集和包含来自不同扫描仪的 15 个受试者的 MICCAI 2016 MSSEG 挑战赛数据集。所提出的多输入二维架构在 ISBI 挑战赛中表现出色,其中可获得公开访问的论文,能够在不进行额外后处理的情况下超越最先进的 3D 方法,能够快速适应其他扫描仪,对扫描仪变化具有鲁棒性,甚至可以在没有专用 GPU 的标准笔记本电脑上进行推理部署。