Suppr超能文献

深度特征拼接在分类问题中的效果:一种针对新冠肺炎疾病检测的方法

The effect of deep feature concatenation in the classification problem: An approach on COVID-19 disease detection.

作者信息

Cengil Emine, Çınar Ahmet

机构信息

Department of Computer Engineering, Faculty of Engineering Firat University Elazig Turkey.

出版信息

Int J Imaging Syst Technol. 2022 Jan;32(1):26-40. doi: 10.1002/ima.22659. Epub 2021 Oct 10.

Abstract

In image classification applications, the most important thing is to obtain useful features. Convolutional neural networks automatically learn the extracted features during training. The classification process is carried out with the obtained features. Therefore, obtaining successful features is critical to achieving high classification success. This article focuses on providing effective features to enhance classification performance. For this purpose, the success of the process of concatenating features in classification is taken as basis. At first, the features acquired by feature transfer method are extracted from AlexNet, Xception, NASNETLarge, and EfficientNet-B0 architectures, which are known to be successful in classification problems. Concatenating the features results in the creation of a new feature set. The method is completed by subjecting the features to various classification algorithms. The proposed pipeline is applied to the three datasets: "COVID-19 Image Dataset," "COVID-19 Pneumonia Normal Chest X-ray (PA) Dataset," and "COVID-19 Radiography Database" for COVID-19 disease detection. The whole datasets contain three classes (normal, COVID, and pneumonia). The best classification accuracies for the three datasets are 98.8%, 95.9%, and 99.6%, respectively. Performance metrics are given such as: sensitivity, precision, specificity, and F1-score values, as well. Contribution of paper is as follows: COVID-19 disease is similar to other lung infections. This situation makes diagnosis difficult. Furthermore, the virus's rapid spread necessitates the need to detect cases as soon as possible. There has been an increased curiosity in computer-aided deep learning models to provide the requirements. The use of the proposed method will be beneficial as it provides high accuracy.

摘要

在图像分类应用中,最重要的是获取有用的特征。卷积神经网络在训练过程中自动学习提取的特征。分类过程是利用所获得的特征进行的。因此,获得成功的特征对于实现高分类成功率至关重要。本文着重于提供有效的特征以提高分类性能。为此,将分类中特征拼接过程的成功作为基础。首先,通过特征迁移方法从AlexNet、Xception、NASNETLarge和EfficientNet - B0架构中提取特征,这些架构在分类问题中已知是成功的。将这些特征拼接会创建一个新的特征集。该方法通过将这些特征应用于各种分类算法来完成。所提出的流程应用于三个数据集:用于新冠肺炎疾病检测的“新冠肺炎图像数据集”、“新冠肺炎肺炎正常胸部X光(PA)数据集”和“新冠肺炎放射影像数据库”。整个数据集包含三个类别(正常、新冠和肺炎)。这三个数据集的最佳分类准确率分别为98.8%、95.9%和99.6%。还给出了性能指标,如敏感性、精确性、特异性和F1分数值。论文的贡献如下:新冠肺炎疾病与其他肺部感染相似。这种情况使得诊断困难。此外,病毒的快速传播使得需要尽快检测病例。为满足这些需求,计算机辅助深度学习模型引发了越来越多的关注。所提出方法的使用将是有益的,因为它提供了高精度。

相似文献

1
The effect of deep feature concatenation in the classification problem: An approach on COVID-19 disease detection.
Int J Imaging Syst Technol. 2022 Jan;32(1):26-40. doi: 10.1002/ima.22659. Epub 2021 Oct 10.
3
Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.
Int J Comput Assist Radiol Surg. 2021 Feb;16(2):197-206. doi: 10.1007/s11548-020-02305-w. Epub 2021 Jan 9.
5
MediNet: transfer learning approach with MediNet medical visual database.
Multimed Tools Appl. 2023 Mar 20:1-44. doi: 10.1007/s11042-023-14831-1.
7
Deep learning attention-guided radiomics for COVID-19 chest radiograph classification.
Quant Imaging Med Surg. 2023 Feb 1;13(2):572-584. doi: 10.21037/qims-22-531. Epub 2022 Nov 21.
8
Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images.
Br J Radiol. 2021 May 1;94(1121):20201263. doi: 10.1259/bjr.20201263. Epub 2021 Apr 16.
9
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.
Comput Math Methods Med. 2021 Nov 9;2021:9269173. doi: 10.1155/2021/9269173. eCollection 2021.
10
COVID-19 classification using chest X-ray images based on fusion-assisted deep Bayesian optimization and Grad-CAM visualization.
Front Public Health. 2022 Nov 4;10:1046296. doi: 10.3389/fpubh.2022.1046296. eCollection 2022.

引用本文的文献

1
An effective brain stroke diagnosis strategy based on feature extraction and hybrid classifier.
Sci Rep. 2025 Aug 14;15(1):29808. doi: 10.1038/s41598-025-14444-8.
3
Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images.
J King Saud Univ Comput Inf Sci. 2023 Jul;35(7):101596. doi: 10.1016/j.jksuci.2023.101596. Epub 2023 May 25.
4
Multimodality Imaging of COVID-19 Using Fine-Tuned Deep Learning Models.
Diagnostics (Basel). 2023 Mar 28;13(7):1268. doi: 10.3390/diagnostics13071268.
5
RADIC:A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics.
Chemometr Intell Lab Syst. 2023 Feb 15;233:104750. doi: 10.1016/j.chemolab.2022.104750. Epub 2023 Jan 2.
6
Early Diagnosis of COVID-19 Images Using Optimal CNN Hyperparameters.
Diagnostics (Basel). 2022 Dec 27;13(1):76. doi: 10.3390/diagnostics13010076.
7
CoviDetNet: A new COVID-19 diagnostic system based on deep features of chest x-ray.
Int J Imaging Syst Technol. 2022 Sep;32(5):1447-1463. doi: 10.1002/ima.22771. Epub 2022 Jun 10.
8
A novel fusion based convolutional neural network approach for classification of COVID-19 from chest X-ray images.
Biomed Signal Process Control. 2022 Aug;77:103778. doi: 10.1016/j.bspc.2022.103778. Epub 2022 May 2.

本文引用的文献

1
MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction.
BMC Bioinformatics. 2021 Apr 26;22(Suppl 2):31. doi: 10.1186/s12859-020-03936-1.
2
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput Biol Med. 2021 May;132:104319. doi: 10.1016/j.compbiomed.2021.104319. Epub 2021 Mar 11.
3
Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780. doi: 10.1109/TCBB.2021.3065361. Epub 2021 Dec 8.
4
Comparison of different optimizers implemented on the deep learning architectures for COVID-19 classification.
Mater Today Proc. 2021;46:11098-11102. doi: 10.1016/j.matpr.2021.02.244. Epub 2021 Feb 23.
5
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
6
Prediction of COVID-19 - Pneumonia based on Selected Deep Features and One Class Kernel Extreme Learning Machine.
Comput Electr Eng. 2021 Mar;90:106960. doi: 10.1016/j.compeleceng.2020.106960. Epub 2020 Dec 30.
7
Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks.
Pers Ubiquitous Comput. 2023;27(3):733-750. doi: 10.1007/s00779-020-01494-0. Epub 2021 Jan 10.
8
Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.
Int J Comput Assist Radiol Surg. 2021 Feb;16(2):197-206. doi: 10.1007/s11548-020-02305-w. Epub 2021 Jan 9.
9
CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images.
Chaos Solitons Fractals. 2021 Jan;142:110495. doi: 10.1016/j.chaos.2020.110495. Epub 2020 Nov 23.
10
Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study.
Biomed Signal Process Control. 2021 Feb;64:102365. doi: 10.1016/j.bspc.2020.102365. Epub 2020 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验