Suppr超能文献

多模态情感人机交互中通过能量最小化实现主动推理

Active Inference Through Energy Minimization in Multimodal Affective Human-Robot Interaction.

作者信息

Horii Takato, Nagai Yukie

机构信息

Graduate School of Engineering Science, Osaka University, Osaka, Japan.

International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.

出版信息

Front Robot AI. 2021 Nov 26;8:684401. doi: 10.3389/frobt.2021.684401. eCollection 2021.

Abstract

During communication, humans express their emotional states using various modalities (e.g., facial expressions and gestures), and they estimate the emotional states of others by paying attention to multimodal signals. To ensure that a communication robot with limited resources can pay attention to such multimodal signals, the main challenge involves selecting the most effective modalities among those expressed. In this study, we propose an active perception method that involves selecting the most informative modalities using a criterion based on energy minimization. This energy-based model can learn the probability of the network state using energy values, whereby a lower energy value represents a higher probability of the state. A multimodal deep belief network, which is an energy-based model, was employed to represent the relationships between the emotional states and multimodal sensory signals. Compared to other active perception methods, the proposed approach demonstrated improved accuracy using limited information in several contexts associated with affective human-robot interaction. We present the differences and advantages of our method compared to other methods through mathematical formulations using, for example, information gain as a criterion. Further, we evaluate performance of our method, as pertains to active inference, which is based on the free energy principle. Consequently, we establish that our method demonstrated superior performance in tasks associated with mutually correlated multimodal information.

摘要

在交流过程中,人类会使用多种方式(如面部表情和手势)来表达自己的情绪状态,并且通过关注多模态信号来估计他人的情绪状态。为确保资源有限的通信机器人能够关注此类多模态信号,主要挑战在于从所表达的那些方式中选择最有效的方式。在本研究中,我们提出一种主动感知方法,该方法涉及使用基于能量最小化的准则来选择信息最丰富的方式。这种基于能量的模型可以利用能量值学习网络状态的概率,其中能量值越低表示该状态的概率越高。一种基于能量的模型——多模态深度信念网络,被用于表示情绪状态与多模态感官信号之间的关系。与其他主动感知方法相比,在与情感人机交互相关的几种情境中,所提出的方法利用有限信息展示出了更高的准确性。我们通过使用例如信息增益作为准则的数学公式,展示了我们的方法与其他方法相比的差异和优势。此外,我们根据基于自由能量原理的主动推理来评估我们方法的性能。因此,我们确定我们的方法在与相互关联的多模态信息相关的任务中表现出卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bd5/8662315/35b0e58c9027/frobt-08-684401-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验