Suppr超能文献

基于机器学习的脑机接口的中文手语神经解码。

Neural Decoding of Chinese Sign Language With Machine Learning for Brain-Computer Interfaces.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:2721-2732. doi: 10.1109/TNSRE.2021.3137340. Epub 2022 Jan 4.

Abstract

Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language.

摘要

肢体运动解码是脑机接口 (BCI) 研究的重要组成部分。在肢体运动中,手语不仅包含丰富的语义信息和丰富的可操作动作,而且提供了不同的可执行命令。然而,许多研究人员专注于解码粗大运动技能,如普通运动想象或简单的上肢运动的解码。在这里,我们用电极脑电信号 (EEG) 信号探索了基于运动想象和运动执行的中文手语的神经特征和解码。手语不仅包含丰富的语义信息,而且具有丰富的可操作性动作,为我们提供了更多不同的可执行命令。在本文中,二十名受试者被指示执行基于中文手语的运动执行和运动想象。七种分类器用于对所选的手语 EEG 特征进行分类。L1 正则化用于从均值、功率谱密度、样本熵和脑网络连接中学习和选择包含更多信息的特征。分类器的最佳平均分类准确率为 89.90%(想象中的手语为 83.40%)。这些结果表明了不同手语之间解码的可行性。源位置表明,参与手语的神经回路与视觉接触区和运动前区有关。实验评估表明,基于手语的提出的解码策略可以获得出色的分类结果,这为基于手语的肢体解码的后续研究提供了一定的参考价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验