Suppr超能文献

公众对 COVID-19 大流行期间移动医疗应用程序的看法:沙特阿拉伯推特上的网络和情感分析。

Public Perceptions around mHealth Applications during COVID-19 Pandemic: A Network and Sentiment Analysis of Tweets in Saudi Arabia.

机构信息

Medical Informatics and E-learning Unit, Medical Education Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia.

Freelance Research Assistant, Riyadh 12372, Saudi Arabia.

出版信息

Int J Environ Res Public Health. 2021 Dec 20;18(24):13388. doi: 10.3390/ijerph182413388.

Abstract

A series of mitigation efforts were implemented in response to the COVID-19 pandemic in Saudi Arabia, including the development of mobile health applications (mHealth apps) for the public. Assessing the acceptability of mHealth apps among the public is crucial. This study aimed to use Twitter to understand public perceptions around the use of six Saudi mHealth apps used during COVID-19: "Sehha", "Mawid", "Sehhaty", "Tetamman", "Tawakkalna", and "Tabaud". We used two methodological approaches: network and sentiment analysis. We retrieved Twitter data using specific mHealth apps-related keywords. After including relevant tweets, our final mHealth app networks consisted of a total of 4995 Twitter users and 8666 conversational relationships. The largest networks in size (i.e., the number of users) and volume (i.e., the conversational relationships) among all were "Tawakkalna" followed by "Tabaud", and their conversations were led by diverse governmental accounts. In contrast, the four remaining mHealth networks were mainly led by the health sector and media. Our sentiment analysis approach included five classes and showed that most conversations were neutral, which included facts or information pieces and general inquires. For the automated sentiment classifier, we used Support Vector Machine with AraVec embeddings as it outperformed the other tested classifiers. The sentiment classifier showed an accuracy, precision, recall, and F1-score of 85%. Future studies can use social media and real-time analytics to improve mHealth apps' services and user experience, especially during health crises.

摘要

沙特阿拉伯针对 COVID-19 疫情采取了一系列缓解措施,包括为公众开发移动健康应用程序(mHealth apps)。评估公众对 mHealth apps 的接受程度至关重要。本研究旨在利用 Twitter 了解公众对在 COVID-19 期间使用的六个沙特 mHealth apps 的看法:"Sehha"、"Mawid"、"Sehhaty"、"Tetamman"、"Tawakkalna"和"Tabaud"。我们使用了两种方法学方法:网络分析和情感分析。我们使用特定的 mHealth apps 相关关键字检索 Twitter 数据。在包含相关推文后,我们最终的 mHealth app 网络包括总共 4995 名 Twitter 用户和 8666 个对话关系。所有网络中规模(即用户数量)和规模(即对话关系数量)最大的网络是" Tawakkalna",其次是"Tabaud",其对话由各种政府账户主导。相比之下,其余四个 mHealth 网络主要由卫生部门和媒体主导。我们的情感分析方法包括五个类别,结果表明大多数对话都是中立的,包括事实或信息片段和一般查询。对于自动情感分类器,我们使用支持向量机和 AraVec 嵌入,因为它的性能优于其他测试的分类器。情感分类器的准确率、精确率、召回率和 F1 得分为 85%。未来的研究可以利用社交媒体和实时分析来改善 mHealth apps 的服务和用户体验,尤其是在健康危机期间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec0/8708161/c937dddf9825/ijerph-18-13388-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验