文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对 SARS-CoV-2 反应中性别特异性非编码 RNA 及网络的新认识。

A new insight into sex-specific non-coding RNAs and networks in response to SARS-CoV-2.

机构信息

Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

出版信息

Infect Genet Evol. 2022 Jan;97:105195. doi: 10.1016/j.meegid.2021.105195. Epub 2021 Dec 23.


DOI:10.1016/j.meegid.2021.105195
PMID:34954105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8695320/
Abstract

SARS-CoV-2 is the RNA virus responsible for COVID-19, the prognosis of which has been found to be slightly worse in men. The present study aimed to analyze the expression of different mRNAs and their regulatory molecules (miRNAs and lncRNAs) to consider the potential existence of sex-specific expression patterns and COVID-19 susceptibility using bioinformatics analysis. The binding sites of all human mature miRNA sequences on the SARS-CoV-2 genome nucleotide sequence were predicted by the miRanda tool. Sequencing data was excavated using the Galaxy web server from GSE157103, and the output of feature counts was analyzed using DEseq2 packages to obtain differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and DEG annotation analyses were performed using the ToppGene and Metascape tools. Using the RNA Interactome Database, we predicted interactions between differentially expressed lncRNAs and differentially expressed mRNAs. Finally, their networks were constructed with top miRNAs. We identified 11 miRNAs with three to five binding sites on the SARS-COVID-2 genome reference. MiR-29c-3p, miR-21-3p, and miR-6838-5p occupied four binding sites, and miR-29a-3p had five binding sites on the SARS-CoV-2 genome. Moreover, miR-29a-3p, and miR-29c-3p were the top miRNAs targeting DEGs. The expression levels of miRNAs (125, 181b, 130a, 29a, b, c, 212, 181a, 133a) changed in males with COVID-19, in whom they regulated ACE2 expression and affected the immune response by affecting phagosomes, complement activation, and cell-matrix adhesion. Our results indicated that XIST lncRNA was up-regulated, and TTTY14, TTTY10, and ZFY-AS1 lncRN as were down-regulated in both ICU and non-ICU men with COVID-19. Dysregulation of noncoding-RNAs has critical effects on the pathophysiology of men with COVID-19, which is why they may be used as biomarkers and therapeutic agents. Overall, our results indicated that the miR-29 family target regulation patterns and might become promising biomarkers for severity and survival outcome in men with COVID-19.

摘要

SARS-CoV-2 是导致 COVID-19 的 RNA 病毒,据发现,男性 COVID-19 的预后稍差。本研究旨在通过生物信息学分析,分析不同 mRNA 及其调节分子(miRNA 和 lncRNA)的表达,以考虑是否存在潜在的性别特异性表达模式和 COVID-19 易感性。使用 miRanda 工具预测所有人类成熟 miRNA 序列在 SARS-CoV-2 基因组核苷酸序列上的结合位点。使用 Galaxy 网络服务器从 GSE157103 挖掘测序数据,使用 DEseq2 包分析特征计数的输出,以获得差异表达基因(DEGs)。使用 ToppGene 和 Metascape 工具进行基因集富集分析(GSEA)和 DEG 注释分析。使用 RNA 相互作用数据库,预测差异表达 lncRNA 和差异表达 mRNA 之间的相互作用。最后,用 top miRNAs 构建它们的网络。我们在 SARS-COVID-2 基因组参考中发现了 11 个具有三个到五个结合位点的 miRNA。miR-29c-3p、miR-21-3p 和 miR-6838-5p 占据四个结合位点,而 miR-29a-3p 在 SARS-CoV-2 基因组上有五个结合位点。此外,miR-29a-3p 和 miR-29c-3p 是靶向 DEGs 的顶级 miRNA。在患有 COVID-19 的男性中,miRNAs(125、181b、130a、29a、b、c、212、181a、133a)的表达水平发生了变化,它们通过调节 ACE2 表达并影响吞噬体、补体激活和细胞-基质粘附来影响免疫反应。我们的结果表明,XIST lncRNA 在 ICU 和非 ICU 男性 COVID-19 患者中上调,TTTY14、TTTY10 和 ZFY-AS1 lncRNA 下调。非编码 RNA 的失调对男性 COVID-19 的病理生理学有重要影响,因此它们可能被用作生物标志物和治疗剂。总的来说,我们的结果表明,miR-29 家族的靶标调节模式可能成为男性 COVID-19 严重程度和生存结局的有前途的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/c6dbe6539623/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/ed1b525c8ad7/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/78a94e9abfb5/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/1183c7c48f08/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/c6dbe6539623/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/ed1b525c8ad7/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/78a94e9abfb5/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/1183c7c48f08/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/8695320/c6dbe6539623/gr3_lrg.jpg

相似文献

[1]
A new insight into sex-specific non-coding RNAs and networks in response to SARS-CoV-2.

Infect Genet Evol. 2022-1

[2]
Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs.

Genes (Basel). 2020-11-16

[3]
The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review.

Infect Genet Evol. 2021-7

[4]
In Silico Identification of miRNA-lncRNA Interactions in Male Reproductive Disorder Associated with COVID-19 Infection.

Cells. 2021-6-12

[5]
SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms.

Mol Syst Biol. 2021-9

[6]
Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19).

Gene. 2020-8-15

[7]
SARS-COV-2 as potential microRNA sponge in COVID-19 patients.

BMC Med Genomics. 2022-4-23

[8]
Thrombosis-related circulating miR-16-5p is associated with disease severity in patients hospitalised for COVID-19.

RNA Biol. 2022-1

[9]
SARS-CoV infection crosstalk with human host cell noncoding-RNA machinery: An in-silico approach.

Biomed Pharmacother. 2020-10

[10]
Whole-Transcriptome RNA Sequencing Reveals Significant Differentially Expressed mRNAs, miRNAs, and lncRNAs and Related Regulating Biological Pathways in the Peripheral Blood of COVID-19 Patients.

Mediators Inflamm. 2021

引用本文的文献

[1]
Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions.

Biomedicines. 2025-2-16

[2]
Integrative analyses of mendelian randomization and bioinformatics reveal casual relationship and genetic links between COVID-19 and knee osteoarthritis.

BMC Med Genomics. 2025-1-2

[3]
Unveiling the Hidden Regulators: The Impact of lncRNAs on Zoonoses.

Int J Mol Sci. 2024-3-21

[4]
COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches.

Cell Commun Signal. 2024-2-15

[5]
Analyzing the expression pattern of the noncoding RNAs (HOTAIR, PVT-1, XIST, H19, and miRNA-34a) in PBMC samples of patients with COVID-19, according to the disease severity in Iran during 2022-2023: A cross-sectional study.

Health Sci Rep. 2024-2-7

[6]
ceRNA network construction and identification of hub genes as novel therapeutic targets for age-related cataracts using bioinformatics.

PeerJ. 2023

[7]
Potential Predictive Value of miR-125b-5p, miR-155-5p and Their Target Genes in the Course of COVID-19.

Infect Drug Resist. 2022-7-29

[8]
Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19.

Epigenomes. 2022-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索