Suppr超能文献

AntiHalluciNet:一种低剂量计算机断层扫描中深度学习去噪模型行为的潜在审计工具。

AntiHalluciNet: A Potential Auditing Tool of the Behavior of Deep Learning Denoising Models in Low-Dose Computed Tomography.

作者信息

Ahn Chulkyun, Kim Jong Hyo

机构信息

Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.

ClariPi Research, ClariPi, Seoul 03088, Republic of Korea.

出版信息

Diagnostics (Basel). 2023 Dec 31;14(1):96. doi: 10.3390/diagnostics14010096.

Abstract

Gaining the ability to audit the behavior of deep learning (DL) denoising models is of crucial importance to prevent potential hallucinations and adversarial clinical consequences. We present a preliminary version of AntiHalluciNet, which is designed to predict spurious structural components embedded in the residual noise from DL denoising models in low-dose CT and assess its feasibility for auditing the behavior of DL denoising models. We created a paired set of structure-embedded and pure noise images and trained AntiHalluciNet to predict spurious structures in the structure-embedded noise images. The performance of AntiHalluciNet was evaluated by using a newly devised residual structure index (RSI), which represents the prediction confidence based on the presence of structural components in the residual noise image. We also evaluated whether AntiHalluciNet could assess the image fidelity of a denoised image by using only a noise component instead of measuring the SSIM, which requires both reference and test images. Then, we explored the potential of AntiHalluciNet for auditing the behavior of DL denoising models. AntiHalluciNet was applied to three DL denoising models (two pre-trained models, RED-CNN and CTformer, and a commercial software, ClariCT.AI [version 1.2.3]), and whether AntiHalluciNet could discriminate between the noise purity performances of DL denoising models was assessed. AntiHalluciNet demonstrated an excellent performance in predicting the presence of structural components. The RSI values for the structural-embedded and pure noise images measured using the 50% low-dose dataset were 0.57 ± 31 and 0.02 ± 0.02, respectively, showing a substantial difference with a -value < 0.0001. The AntiHalluciNet-derived RSI could differentiate between the quality of the degraded denoised images, with measurement values of 0.27, 0.41, 0.48, and 0.52 for the 25%, 50%, 75%, and 100% mixing rates of the degradation component, which showed a higher differentiation potential compared with the SSIM values of 0.9603, 0.9579, 0.9490, and 0.9333. The RSI measurements from the residual images of the three DL denoising models showed a distinct distribution, being 0.28 ± 0.06, 0.21 ± 0.06, and 0.15 ± 0.03 for RED-CNN, CTformer, and ClariCT.AI, respectively. AntiHalluciNet has the potential to predict the structural components embedded in the residual noise from DL denoising models in low-dose CT. With AntiHalluciNet, it is feasible to audit the performance and behavior of DL denoising models in clinical environments where only residual noise images are available.

摘要

获得对深度学习(DL)去噪模型行为进行审计的能力对于防止潜在的幻觉和对抗性临床后果至关重要。我们展示了AntiHalluciNet的初步版本,其旨在预测低剂量CT中DL去噪模型的残余噪声中嵌入的虚假结构成分,并评估其对DL去噪模型行为进行审计的可行性。我们创建了一组配对的包含结构嵌入和纯噪声的图像,并训练AntiHalluciNet来预测结构嵌入噪声图像中的虚假结构。通过使用新设计的残余结构指数(RSI)评估AntiHalluciNet的性能,该指数基于残余噪声图像中结构成分的存在表示预测置信度。我们还评估了AntiHalluciNet是否可以仅通过使用噪声成分来评估去噪图像的图像保真度,而不是测量需要参考图像和测试图像的结构相似性指数(SSIM)。然后,我们探索了AntiHalluciNet对DL去噪模型行为进行审计的潜力。将AntiHalluciNet应用于三个DL去噪模型(两个预训练模型RED-CNN和CTformer,以及一个商业软件ClariCT.AI [版本1.2.3]),并评估AntiHalluciNet是否能够区分DL去噪模型的噪声纯度性能。AntiHalluciNet在预测结构成分的存在方面表现出色。使用50%低剂量数据集测量的结构嵌入和纯噪声图像的RSI值分别为0.57±0.31和0.02±0.02,显示出显著差异,p值<0.0001。源自AntiHalluciNet的RSI可以区分退化去噪图像的质量,对于退化成分的25%、50%、75%和100%混合率,测量值分别为0.27、0.41、0.48和0.52,与结构相似性指数值0.9603、0.9579、0.9490和0.9333相比,显示出更高的区分潜力。来自三个DL去噪模型的残余图像的RSI测量显示出明显的分布,RED-CNN、CTformer和ClariCT.AI的分别为0.28±0.06、0.21±0.06和0.15±0.03。AntiHalluciNet有潜力预测低剂量CT中DL去噪模型的残余噪声中嵌入的结构成分。使用AntiHalluciNet,在仅可获得残余噪声图像的临床环境中审计DL去噪模型的性能和行为是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4600/10795730/b5ef8ce2133d/diagnostics-14-00096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验