Suppr超能文献

用于多类心律失常分类的多尺度卷积神经网络集成

Multi-Scale Convolutional Neural Network Ensemble for Multi-Class Arrhythmia Classification.

作者信息

Prabhakararao Eedara, Dandapat Samarendra

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):3802-3812. doi: 10.1109/JBHI.2021.3138986. Epub 2022 Aug 11.

Abstract

The automated analysis of electrocardiogram (ECG) signals plays a crucial role in the early diagnosis and management of cardiac arrhythmias. The diverse etiology of arrhythmia and the subtle variations in the pathological ECG characteristics pose challenges in designing reliable automated methods. Existing methods mostly use single deep convolutional neural networks (DCNN) based approaches for arrhythmia classification. Such approaches may not be adequate for effectively representing diverse pathological ECG characteristics. This paper presents a novel way of using an ensemble of multiple DCNN classifiers for effective arrhythmia classification named Deep Multi-Scale Convolutional neural network Ensemble (DMSCE). Specifically, we designed multiple scale-dependent DCNN expert classifiers with different receptive fields to encode the scale-specific pathological ECG characteristics and generate the local predictions. A convolutional gating network is designed to compute the dynamic fusion weights for the experts based on their competencies. These weights are used to aggregate the local predictions and generate final diagnosis decisions. Moreover, a new error function with a correlation penalty is formulated to enable interaction and optimal diversity among experts during the training process. The model is evaluated on the PTBXL-2020 12-lead ECG and the CinC-training2017 single-lead ECG datasets and delivers state-of-the-art performance. Average F1-score of 84.5 % and 88.3 % are obtained for the PTBXL-2020 and the CinC-training2017 datasets, respectively. Impressive performance across various cardiac arrhythmias and the elegant generalization ability for different leads make the method suitable for reliable remote or in-hospital arrhythmia monitoring applications.

摘要

心电图(ECG)信号的自动分析在心律失常的早期诊断和管理中起着至关重要的作用。心律失常的病因多样,病理性心电图特征的细微变化给设计可靠的自动化方法带来了挑战。现有方法大多使用基于单深度卷积神经网络(DCNN)的方法进行心律失常分类。这种方法可能不足以有效表示多样的病理性心电图特征。本文提出了一种使用多个DCNN分类器集成进行有效心律失常分类的新方法,即深度多尺度卷积神经网络集成(DMSCE)。具体而言,我们设计了具有不同感受野的多个尺度相关DCNN专家分类器,以编码特定尺度的病理性心电图特征并生成局部预测。设计了一个卷积门控网络,根据专家的能力计算其动态融合权重。这些权重用于聚合局部预测并生成最终诊断决策。此外,制定了一种带有相关惩罚的新误差函数,以在训练过程中实现专家之间的交互和最优多样性。该模型在PTBXL - 2020 12导联心电图和CinC - training2017单导联心电图数据集上进行了评估,并提供了领先的性能。PTBXL - 2020和CinC - training2017数据集的平均F1分数分别为84.5%和88.3%。该方法在各种心律失常方面表现出色,对不同导联具有出色的泛化能力,适用于可靠的远程或院内心律失常监测应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验