Suppr超能文献

尿液蛋白质组学可识别不同阶段糖尿病肾病的生物标志物。

Urine proteomics identifies biomarkers for diabetic kidney disease at different stages.

作者信息

Fan Guanjie, Gong Tongqing, Lin Yuping, Wang Jianping, Sun Lu, Wei Hua, Yang Xing, Liu Zhenjie, Li Xinliang, Zhao Ling, Song Lan, He Jiali, Liu Haibo, Li Xiuming, Liu Lifeng, Li Anxiang, Lu Qiyun, Zou Dongyin, Wen Jianxuan, Xia Yaqing, Wu Liyan, Huang Haoyue, Zhang Yuan, Xie Wenwen, Huang Jinzhu, Luo Lulu, Wu Lulu, He Liu, Liang Qingshun, Chen Qubo, Chen Guowei, Bai Mingze, Qin Jun, Ni Xiaotian, Tang Xianyu, Wang Yi

机构信息

The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.

The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, China.

出版信息

Clin Proteomics. 2021 Dec 29;18(1):32. doi: 10.1186/s12014-021-09338-6.

Abstract

BACKGROUND

Type 2 diabetic kidney disease is the most common cause of chronic kidney diseases (CKD) and end-stage renal diseases (ESRD). Although kidney biopsy is considered as the 'gold standard' for diabetic kidney disease (DKD) diagnosis, it is an invasive procedure, and the diagnosis can be influenced by sampling bias and personal judgement. It is desirable to establish a non-invasive procedure that can complement kidney biopsy in diagnosis and tracking the DKD progress.

METHODS

In this cross-sectional study, we collected 252 urine samples, including 134 uncomplicated diabetes, 65 DKD, 40 CKD without diabetes and 13 follow-up diabetic samples, and analyzed the urine proteomes with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We built logistic regression models to distinguish uncomplicated diabetes, DKD and other CKDs.

RESULTS

We quantified 559 ± 202 gene products (GPs) (Mean ± SD) on a single sample and 2946 GPs in total. Based on logistic regression models, DKD patients could be differentiated from the uncomplicated diabetic patients with 2 urinary proteins (AUC = 0.928), and the stage 3 (DKD3) and stage 4 (DKD4) DKD patients with 3 urinary proteins (AUC = 0.949). These results were validated in an independent dataset. Finally, a 4-protein classifier identified putative pre-DKD3 patients, who showed DKD3 proteomic features but were not diagnosed by clinical standards. Follow-up studies on 11 patients indicated that 2 putative pre-DKD patients have progressed to DKD3.

CONCLUSIONS

Our study demonstrated the potential for urinary proteomics as a noninvasive method for DKD diagnosis and identifying high-risk patients for progression monitoring.

摘要

背景

2型糖尿病肾病是慢性肾脏病(CKD)和终末期肾病(ESRD)的最常见病因。尽管肾活检被认为是糖尿病肾病(DKD)诊断的“金标准”,但它是一种侵入性操作,且诊断可能受抽样偏差和个人判断影响。因此,需要建立一种非侵入性方法来辅助肾活检进行DKD的诊断及病程监测。

方法

在这项横断面研究中,我们收集了252份尿液样本,包括134例无并发症糖尿病患者、65例DKD患者、40例非糖尿病CKD患者和13例糖尿病随访样本,并采用液相色谱-串联质谱(LC-MS/MS)分析尿液蛋白质组。我们构建了逻辑回归模型以区分无并发症糖尿病、DKD和其他CKD。

结果

我们在单个样本上定量了559±202个基因产物(GP)(均值±标准差),共定量了2946个GP。基于逻辑回归模型,2种尿蛋白可将DKD患者与无并发症糖尿病患者区分开(曲线下面积[AUC]=0.928),3种尿蛋白可区分3期(DKD3)和4期(DKD4)DKD患者(AUC=0.949)。这些结果在独立数据集中得到验证。最后,一个4蛋白分类器识别出了推定的DKD3前期患者,这些患者具有DKD3蛋白质组特征,但未达到临床诊断标准。对11例患者的随访研究表明,2例推定的DKD前期患者已进展为DKD3。

结论

我们的研究表明,尿液蛋白质组学作为一种非侵入性方法,具有用于DKD诊断和识别进展监测高危患者的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff7/8903606/eebb20532e01/12014_2021_9338_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验