Eckhoff Marco, Behler Jörg
Institut für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
J Chem Phys. 2021 Dec 28;155(24):244703. doi: 10.1063/5.0073449.
Unraveling the atomistic and the electronic structure of solid-liquid interfaces is the key to the design of new materials for many important applications, from heterogeneous catalysis to battery technology. Density functional theory (DFT) calculations can, in principle, provide a reliable description of such interfaces, but the high computational costs severely restrict the accessible time and length scales. Here, we report machine learning-driven simulations of various interfaces between water and lithium manganese oxide (LiMnO), an important electrode material in lithium ion batteries and a catalyst for the oxygen evolution reaction. We employ a high-dimensional neural network potential to compute the energies and forces several orders of magnitude faster than DFT without loss in accuracy. In addition, a high-dimensional neural network for spin prediction is utilized to analyze the electronic structure of the manganese ions. Combining these methods, a series of interfaces is investigated by large-scale molecular dynamics. The simulations allow us to gain insights into a variety of properties, such as the dissociation of water molecules, proton transfer processes, and hydrogen bonds, as well as the geometric and electronic structure of the solid surfaces, including the manganese oxidation state distribution, Jahn-Teller distortions, and electron hopping.
揭示固液界面的原子结构和电子结构是设计许多重要应用新材料的关键,这些应用涵盖从多相催化到电池技术等诸多领域。原则上,密度泛函理论(DFT)计算能够为这类界面提供可靠的描述,但高昂的计算成本严重限制了可触及的时间和长度尺度。在此,我们报告了机器学习驱动的水与锂锰氧化物(LiMnO)之间各种界面的模拟,锂锰氧化物是锂离子电池中的一种重要电极材料,也是析氧反应的催化剂。我们采用高维神经网络势来计算能量和力,其速度比DFT快几个数量级,且精度无损。此外,利用一个用于自旋预测的高维神经网络来分析锰离子的电子结构。结合这些方法,通过大规模分子动力学研究了一系列界面。这些模拟使我们能够深入了解各种性质,如水分子的解离、质子转移过程和氢键,以及固体表面的几何和电子结构,包括锰的氧化态分布、 Jahn-Teller 畸变和电子跳跃。