文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Metal-Organic Frameworks and Their Composites Towards Biomedical Applications.

作者信息

Ma Yana, Qu Xianglong, Liu Cui, Xu Qiuran, Tu Kangsheng

机构信息

School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, China.

Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China.

出版信息

Front Mol Biosci. 2021 Dec 21;8:805228. doi: 10.3389/fmolb.2021.805228. eCollection 2021.


DOI:10.3389/fmolb.2021.805228
PMID:34993235
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8724581/
Abstract

Owing to their unique features, including high cargo loading, biodegradability, and tailorability, metal-organic frameworks (MOFs) and their composites have attracted increasing attention in various fields. In this review, application strategies of MOFs and their composites in nanomedicine with emphasis on their functions are presented, from drug delivery, therapeutic agents for different diseases, and imaging contrast agents to sensor nanoreactors. Applications of MOF derivatives in nanomedicine are also introduced. Besides, we summarize different functionalities related to MOFs, which include targeting strategy, biomimetic modification, responsive moieties, and other functional decorations. Finally, challenges and prospects are highlighted about MOFs in future applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/31524ad376b5/fmolb-08-805228-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/77a4bc7a7f57/fmolb-08-805228-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/2c8d92e3ecd8/fmolb-08-805228-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/2cb413d64f65/fmolb-08-805228-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/23103680dbcf/fmolb-08-805228-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/180eb8af8fb0/fmolb-08-805228-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/3c98114097d8/fmolb-08-805228-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/049dcf30cf3f/fmolb-08-805228-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/58b9d1788090/fmolb-08-805228-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/9b4f2e7fb18b/fmolb-08-805228-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/95dfcedbc874/fmolb-08-805228-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/5694d73feb94/fmolb-08-805228-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/196fa2348a27/fmolb-08-805228-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/1ad949ed91d2/fmolb-08-805228-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/31524ad376b5/fmolb-08-805228-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/77a4bc7a7f57/fmolb-08-805228-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/2c8d92e3ecd8/fmolb-08-805228-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/2cb413d64f65/fmolb-08-805228-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/23103680dbcf/fmolb-08-805228-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/180eb8af8fb0/fmolb-08-805228-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/3c98114097d8/fmolb-08-805228-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/049dcf30cf3f/fmolb-08-805228-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/58b9d1788090/fmolb-08-805228-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/9b4f2e7fb18b/fmolb-08-805228-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/95dfcedbc874/fmolb-08-805228-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/5694d73feb94/fmolb-08-805228-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/196fa2348a27/fmolb-08-805228-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/1ad949ed91d2/fmolb-08-805228-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/8724581/31524ad376b5/fmolb-08-805228-g014.jpg

相似文献

[1]
Metal-Organic Frameworks and Their Composites Towards Biomedical Applications.

Front Mol Biosci. 2021-12-21

[2]
Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications.

Drug Discov Today. 2017-4

[3]
Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors.

Mikrochim Acta. 2022-3-28

[4]
Advances in antitumor nanomedicine based on functional metal-organic frameworks beyond drug carriers.

J Mater Chem B. 2022-2-2

[5]
Metal-organic frameworks-based sensitive electrochemiluminescence biosensing.

Biosens Bioelectron. 2020-9-15

[6]
Integrated design and application of stimuli-responsive metal-organic frameworks in biomedicine: current status and future perspectives.

J Mater Chem B. 2024-8-28

[7]
Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications.

Biotechnol J. 2021-2

[8]
Metal-organic framework composites: from fundamentals to applications.

Nanoscale. 2015-5-7

[9]
Nanoscaled Metal-Organic Frameworks for Biosensing, Imaging, and Cancer Therapy.

Adv Healthc Mater. 2018-3-6

[10]
Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications.

Nanomicro Lett. 2020-5-2

引用本文的文献

[1]
Positional functionalizations of metal-organic frameworks through invasive ligand exchange and additory MOF-on-MOF strategies: A review.

Smart Mol. 2024-5-20

[2]
Surface-functionalized UIO-66-NH for dual-drug delivery of vancomycin and amikacin against vancomycin-resistant Staphylococcus aureus.

BMC Microbiol. 2024-11-8

[3]
Biomimetic functionalized metal organic frameworks as multifunctional agents: Paving the way for cancer vaccine advances.

Mater Today Bio. 2024-6-20

[4]
MOFs for next-generation cancer therapeutics through a biophysical approach-a review.

Front Bioeng Biotechnol. 2024-6-13

[5]
Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review.

Materials (Basel). 2023-6-29

[6]
Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review.

Biosensors (Basel). 2023-6-19

[7]
Nanosized metal-organic frameworks as unique platforms for bioapplications.

Chem Commun (Camb). 2023-3-7

[8]
The Human Dermis as a Target of Nanoparticles for Treating Skin Conditions.

Pharmaceutics. 2022-12-20

[9]
Metal-organic frameworks for hepatocellular carcinoma therapy and mechanism.

Front Pharmacol. 2022-9-26

[10]
Nanomaterials: A powerful tool for tumor immunotherapy.

Front Immunol. 2022

本文引用的文献

[1]
Conferring Ti-Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy.

Adv Mater. 2021-5

[2]
Metal-Organic Framework (MOF)-Based Biomaterials for Tissue Engineering and Regenerative Medicine.

Front Bioeng Biotechnol. 2021-3-11

[3]
A Cationic Metal-Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management.

Nano Lett. 2021-3-24

[4]
Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy.

Int J Nanomedicine. 2021

[5]
Peroxidase- and UV-triggered oxidase mimetic activities of the UiO-66-NH/chitosan composite membrane for antibacterial properties.

Biomater Sci. 2021-4-7

[6]
MOFs-Derived Fe-N Codoped Carbon Nanoparticles as O-Evolving Reactor and ROS Generator for CDT/PDT/PTT Synergistic Treatment of Tumors.

Bioconjug Chem. 2021-2-17

[7]
Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy.

Sci Adv. 2021-1

[8]
Multienzyme-Mimic Ultrafine Alloyed Nanoparticles in Metal Organic Frameworks for Enhanced Chemodynamic Therapy.

Small. 2021-2

[9]
Nano-MOFs as targeted drug delivery agents to combat antibiotic-resistant bacterial infections.

R Soc Open Sci. 2020-12-2

[10]
Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors.

Theranostics. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索