Suppr超能文献

使用重建相空间图像的深度学习方法来检测癫痫发作。

Deep learning approach to detect seizure using reconstructed phase space images.

作者信息

Ilakiyaselvan N, Nayeemulla Khan A, Shahina A

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamilnadu 600127, India.

Department of Information Technology, SSN College of Engineering, Kalavakkam, Tamilnadu 603110, India.

出版信息

J Biomed Res. 2020 Jan 24;34(3):240-250. doi: 10.7555/JBR.34.20190043.

Abstract

Epilepsy is a chronic neurological disorder that affects the function of the brain in people of all ages. It manifests in the electroencephalogram (EEG) signal which records the electrical activity of the brain. Various image processing, signal processing, and machine-learning based techniques are employed to analyze epilepsy, using spatial and temporal features. The nervous system that generates the EEG signal is considered nonlinear and the EEG signals exhibit chaotic behavior. In order to capture these nonlinear dynamics, we use reconstructed phase space (RPS) representation of the signal. Earlier studies have primarily addressed seizure detection as a binary classification (normal . ictal) problem and rarely as a ternary class (normal . interictal . ictal) problem. We employ transfer learning on a pre-trained deep neural network model and retrain it using RPS images of the EEG signal. The classification accuracy of the model for the binary classes is (98.5±1.5)% and (95±2)% for the ternary classes. The performance of the convolution neural network (CNN) model is better than the other existing statistical approach for all performance indicators such as accuracy, sensitivity, and specificity. The result of the proposed approach shows the prospect of employing RPS images with CNN for predicting epileptic seizures.

摘要

癫痫是一种慢性神经系统疾病,影响各年龄段人群的大脑功能。它在记录大脑电活动的脑电图(EEG)信号中表现出来。人们采用各种基于图像处理、信号处理和机器学习的技术,利用空间和时间特征来分析癫痫。产生EEG信号的神经系统被认为是非线性的,并且EEG信号表现出混沌行为。为了捕捉这些非线性动力学,我们使用信号的重构相空间(RPS)表示。早期研究主要将癫痫发作检测作为一个二元分类(正常.发作期)问题,很少作为一个三元分类(正常.发作间期.发作期)问题。我们在一个预训练的深度神经网络模型上应用迁移学习,并使用EEG信号的RPS图像对其进行重新训练。该模型对二元分类的准确率为(98.5±1.5)%,对三元分类的准确率为(95±2)%。对于所有性能指标,如准确率、灵敏度和特异性,卷积神经网络(CNN)模型的性能均优于其他现有的统计方法。所提方法的结果表明了将RPS图像与CNN结合用于预测癫痫发作的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a87/7324278/b7969b757789/jbr-34-3-240-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验