Suppr超能文献

新生儿脑光声成像中检测缺氧的波长和脉冲能量优化:一项模拟研究

Wavelength and pulse energy optimization for detecting hypoxia in photoacoustic imaging of the neonatal brain: a simulation study.

作者信息

Mahmoodkalayeh Sadreddin, Kratkiewicz Karl, Manwar Rayyan, Shahbazi Meysam, Ansari Mohammad Ali, Natarajan Girija, Asano Eishi, Avanaki Kamran

机构信息

Department of Physics, Shahid Beheshti University, Tehran, Iran.

Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.

出版信息

Biomed Opt Express. 2021 Nov 10;12(12):7458-7477. doi: 10.1364/BOE.439147. eCollection 2021 Dec 1.

Abstract

Cerebral hypoxia is a severe injury caused by oxygen deprivation to the brain. Hypoxia in the neonatal period increases the risk for the development of neurological disorders, including hypoxic-ischemic encephalopathy, cerebral palsy, periventricular leukomalacia, and hydrocephalus. It is crucial to recognize hypoxia as soon as possible because early intervention improves outcomes. Photoacoustic imaging, using at least two wavelengths, through a spectroscopic analysis, can measure brain oxygen saturation. Due to the spectral coloring effect arising from the dependency of optical properties of biological tissues to the wavelength of light, choosing the right wavelength-pair for efficient and most accurate oxygen saturation measurement and consequently quantifying hypoxia at a specific depth is critical. Using a realistic neonate head model and Monte Carlo simulations, we found practical wavelength-pairs that quantified regions with hypoxia most accurately at different depths down to 22 mm into the cortex neighboring the lateral ventricle. We also demonstrated, for the first time, that the accuracy of the sO measurement can be increased by adjusting the level of light energy for each wavelength-pair. Considering the growing interest in photoacoustic imaging of the brain, this work will assist in a more accurate use of photoacoustic spectroscopy and help in the clinical translation of this promising imaging modality. Please note that explaining the effect of acoustic aberration of the skull is not in the scope of this study.

摘要

脑缺氧是一种因大脑缺氧而导致的严重损伤。新生儿期缺氧会增加神经障碍的发病风险,包括缺氧缺血性脑病、脑瘫、脑室周围白质软化症和脑积水。尽早识别缺氧至关重要,因为早期干预可改善预后。光声成像通过光谱分析,使用至少两个波长来测量脑氧饱和度。由于生物组织的光学特性对光波长的依赖性会产生光谱着色效应,因此选择合适的波长对以进行高效且最准确的氧饱和度测量,并进而在特定深度量化缺氧情况至关重要。通过使用逼真的新生儿头部模型和蒙特卡洛模拟,我们找到了实用的波长对,这些波长对能在距侧脑室相邻皮质深至22毫米的不同深度最准确地量化缺氧区域。我们还首次证明,通过调整每个波长对的光能水平,可以提高血氧饱和度(sO)测量的准确性。鉴于对脑部光声成像的兴趣与日俱增,这项工作将有助于更准确地使用光声光谱,并推动这种有前景的成像方式的临床转化。请注意,解释颅骨声像差的影响不在本研究范围内。

相似文献

1
Wavelength and pulse energy optimization for detecting hypoxia in photoacoustic imaging of the neonatal brain: a simulation study.
Biomed Opt Express. 2021 Nov 10;12(12):7458-7477. doi: 10.1364/BOE.439147. eCollection 2021 Dec 1.
2
Validation of noninvasive photoacoustic measurements of sagittal sinus oxyhemoglobin saturation in hypoxic neonatal piglets.
J Appl Physiol (1985). 2018 Oct 1;125(4):983-989. doi: 10.1152/japplphysiol.00184.2018. Epub 2018 Jun 21.
3
Impact of depth-dependent optical attenuation on wavelength selection for spectroscopic photoacoustic imaging.
Photoacoustics. 2018 Oct 9;12:46-54. doi: 10.1016/j.pacs.2018.10.001. eCollection 2018 Dec.
4
Wavelength-dependent error minimization for quantitative spectroscopic photoacoustic tomography with a ring-array system.
Z Med Phys. 2023 Aug;33(3):444-451. doi: 10.1016/j.zemedi.2023.04.005. Epub 2023 May 22.
7
Evaluation of multi-wavelengths LED-based photoacoustic imaging for maximum safe resection of glioma: a proof of concept study.
Int J Comput Assist Radiol Surg. 2020 Jun;15(6):1053-1062. doi: 10.1007/s11548-020-02191-2. Epub 2020 May 25.
9
Self-Fluence-Compensated Functional Photoacoustic Microscopy.
IEEE Trans Med Imaging. 2021 Dec;40(12):3856-3866. doi: 10.1109/TMI.2021.3099820. Epub 2021 Nov 30.
10
Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation.
J Biophotonics. 2020 Jun;13(6):e201960229. doi: 10.1002/jbio.201960229. Epub 2020 Mar 3.

引用本文的文献

1
Quantitative assessment of thrombosis-induced blood oxygenation change in deep tissues based on photoacoustic tomography: an study.
Biomed Opt Express. 2025 Mar 24;16(4):1557-1568. doi: 10.1364/BOE.557086. eCollection 2025 Apr 1.
2
Spiral laser scanning photoacoustic microscopy for functional brain imaging in rats.
Neurophotonics. 2024 Jan;11(1):015007. doi: 10.1117/1.NPh.11.1.015007. Epub 2024 Feb 9.
4
Photoacoustic imaging for investigating tumor hypoxia: a strategic assessment.
Theranostics. 2023 May 29;13(10):3346-3367. doi: 10.7150/thno.84253. eCollection 2023.
5
Exploring the Association between Oxygen Concentration and Life Expectancy in China: A Quantitative Analysis.
Int J Environ Res Public Health. 2023 Jan 8;20(2):1125. doi: 10.3390/ijerph20021125.
6
Couplants in Acoustic Biosensing Systems.
Chemosensors (Basel). 2022 May 9;10(5):181. doi: 10.3390/chemosensors10050181. eCollection 2022 May.

本文引用的文献

2
Photoacoustic computed tomography for functional human brain imaging [Invited].
Biomed Opt Express. 2021 Jun 15;12(7):4056-4083. doi: 10.1364/BOE.423707. eCollection 2021 Jul 1.
3
Massively parallel functional photoacoustic computed tomography of the human brain.
Nat Biomed Eng. 2022 May;6(5):584-592. doi: 10.1038/s41551-021-00735-8. Epub 2021 May 31.
4
Acoustic impact of the human skull on transcranial photoacoustic imaging.
Biomed Opt Express. 2021 Feb 22;12(3):1512-1528. doi: 10.1364/BOE.420084. eCollection 2021 Mar 1.
5
Technical considerations in the Verasonics research ultrasound platform for developing a photoacoustic imaging system.
Biomed Opt Express. 2021 Jan 27;12(2):1050-1084. doi: 10.1364/BOE.415481. eCollection 2021 Feb 1.
6
Deep learning protocol for improved photoacoustic brain imaging.
J Biophotonics. 2020 Oct;13(10):e202000212. doi: 10.1002/jbio.202000212. Epub 2020 Aug 17.
7
Skull acoustic aberration correction in photoacoustic microscopy using a vector space similarity model: a proof-of-concept simulation study.
Biomed Opt Express. 2020 Sep 14;11(10):5542-5556. doi: 10.1364/BOE.402027. eCollection 2020 Oct 1.
9
Overview of Ultrasound Detection Technologies for Photoacoustic Imaging.
Micromachines (Basel). 2020 Jul 17;11(7):692. doi: 10.3390/mi11070692.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验