Suppr超能文献

利用自我学习的人口行为变化模型对 COVID-19 传播动力学进行建模。

Modeling COVID-19 Transmission Dynamics With Self-Learning Population Behavioral Change.

机构信息

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.

Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.

出版信息

Front Public Health. 2021 Dec 22;9:768852. doi: 10.3389/fpubh.2021.768852. eCollection 2021.

Abstract

Many regions observed recurrent outbreaks of COVID-19 cases after relaxing social distancing measures. It suggests that maintaining sufficient social distancing is important for limiting the spread of COVID-19. The change of population behavior responding to the social distancing measures becomes an important factor for the pandemic prediction. In this paper, we develop a SEAIR model for studying the dynamics of COVID-19 transmission with population behavioral change. In our model, the population is divided into several groups with their own social behavior in response to the delayed information about the number of the infected population. The transmission rate depends on the behavioral changes of all the population groups, forming a feedback loop to affect the COVID-19 dynamics. Based on the data of Hong Kong, our simulations demonstrate how the perceived cost after infection and the information delay affect the level and the time period of the COVID-19 waves.

摘要

许多地区在放宽社会距离措施后观察到 COVID-19 病例反复爆发。这表明保持足够的社会距离对于限制 COVID-19 的传播很重要。人口行为对社会距离措施的反应变化成为大流行预测的一个重要因素。在本文中,我们开发了一个 SEAIR 模型来研究 COVID-19 传播的动力学,其中包括人口行为变化。在我们的模型中,人群被分为几个群体,他们根据有关感染人群数量的延迟信息,有各自的社会行为。传播率取决于所有人群群体的行为变化,形成一个反馈循环,影响 COVID-19 的动态。基于香港的数据,我们的模拟演示了感染后感知成本和信息延迟如何影响 COVID-19 波的水平和时间段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/420b/8727367/10c1bc20f7ff/fpubh-09-768852-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验