Suppr超能文献

用于疾病相关外泌体灵敏检测的纳米等离子体传感器方法。

Nanoplasmonic Sensor Approaches for Sensitive Detection of Disease-Associated Exosomes.

机构信息

Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States.

School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States.

出版信息

ACS Appl Bio Mater. 2021 Sep 20;4(9):6589-6603. doi: 10.1021/acsabm.1c00113. Epub 2021 Aug 1.

Abstract

Exosomes are abundantly secreted by most cells that carry membrane and cytosolic factors that can reflect the physiologic state of their source cells and thus have strong potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, traditional diagnostic or prognostic applications that might use exosomes are hindered by the lack of rapid and sensitive assays that can exploit their biological information. An array of assay approaches have been developed to address this deficit, including those that integrate immunoassays with nanoplasmonic sensors to measure changes in optical refractive indexes in response to the binding of low concentrations of their targeted molecules. These sensors take advantage of enhanced and tunable interactions between the electron clouds of nanoplasmonic particles and structures and incident electromagnetic radiation to enable isolation-free and ultrasensitive quantification of disease-associated exosome biomarkers present in complex biological samples. These unique advantages make nanoplasmonic sensing one of the most competitive approaches available for clinical applications and point-of-care tests that evaluate exosome-based biomarkers. This review will briefly summarize the origin and clinical utility of exosomes and the limitations of current isolation and analysis approaches before reviewing the specific advantages and limitations of nanoplasmonic sensing devices and indicating what additional developments are necessary to allow the translation of these approaches into clinical applications.

摘要

外泌体是大多数细胞大量分泌的,携带的膜和细胞溶质因子可以反映其来源细胞的生理状态,因此具有作为早期诊断、疾病分期和治疗监测的生物标志物的强大潜力。然而,可能使用外泌体的传统诊断或预后应用受到缺乏快速和敏感的检测方法的阻碍,这些方法可以利用它们的生物学信息。已经开发了一系列检测方法来解决这一不足,包括将免疫测定与纳米等离子体传感器集成的方法,以测量光学折射率的变化,以响应其靶向分子的低浓度结合。这些传感器利用纳米等离子体颗粒和结构的电子云与入射电磁辐射之间增强和可调谐的相互作用,实现了在复杂生物样品中存在的与疾病相关的外泌体生物标志物的无需隔离和超灵敏定量。这些独特的优势使得纳米等离子体传感成为最具竞争力的临床应用和即时护理测试评估基于外泌体的生物标志物的方法之一。本综述将简要总结外泌体的起源和临床应用以及当前分离和分析方法的局限性,然后回顾纳米等离子体传感设备的具体优势和局限性,并指出将这些方法转化为临床应用所需的进一步发展。

相似文献

本文引用的文献

9
Exosome-Induced Regulation in Inflammatory Bowel Disease.外泌体诱导的炎症性肠病调控机制。
Front Immunol. 2019 Jun 28;10:1464. doi: 10.3389/fimmu.2019.01464. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验