Suppr超能文献

FASD 患儿脑电图信号分析的初步研究——朴素贝叶斯分类器的实现。

Pilot Study on Analysis of Electroencephalography Signals from Children with FASD with the Implementation of Naive Bayesian Classifiers.

机构信息

St. Louis Children Hospital, 31-503 Krakow, Poland.

Department of Pathophysiology, Jagiellonian University in Krakow-Collegium Medicum, 31-121 Krakow, Poland.

出版信息

Sensors (Basel). 2021 Dec 24;22(1):103. doi: 10.3390/s22010103.

Abstract

In this paper Naive Bayesian classifiers were applied for the purpose of differentiation between the EEG signals recorded from children with Fetal Alcohol Syndrome Disorders (FASD) and healthy ones. This work also provides a brief introduction to the FASD itself, explaining the social, economic and genetic reasons for the FASD occurrence. The obtained results were good and promising and indicate that EEG recordings can be a helpful tool for potential diagnostics of FASDs children affected with it, in particular those with invisible physical signs of these spectrum disorders.

摘要

本文应用朴素贝叶斯分类器对胎儿酒精谱系障碍(FASD)儿童和健康儿童的脑电图信号进行区分。本文还简要介绍了 FASD 本身,解释了 FASD 发生的社会、经济和遗传原因。研究结果良好且有前景,表明脑电图记录可能有助于对受影响的 FASD 儿童进行潜在诊断,特别是那些具有这些谱系障碍的无形身体迹象的儿童。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd2f/8747358/3244e701f96d/sensors-22-00103-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验