Suppr超能文献

快速热退火对射频磁控溅射生长的氮掺杂ZnO薄膜中电子传输机制影响的研究。

Investigation of the Effects of Rapid Thermal Annealing on the Electron Transport Mechanism in Nitrogen-Doped ZnO Thin Films Grown by RF Magnetron Sputtering.

作者信息

Simeonov Simeon, Szekeres Anna, Spassov Dencho, Anastasescu Mihai, Stanculescu Ioana, Nicolescu Madalina, Aperathitis Elias, Modreanu Mircea, Gartner Mariuca

机构信息

Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria.

Institute of Physical Chemistry "Ilie Murgulescu", Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania.

出版信息

Nanomaterials (Basel). 2021 Dec 22;12(1):19. doi: 10.3390/nano12010019.

Abstract

Nitrogen-doped ZnO (ZnO:N) thin films, deposited on Si(100) substrates by RF magnetron sputtering in a gas mixture of argon, oxygen, and nitrogen at different ratios followed by Rapid Thermal Annealing (RTA) at 400 °C and 550 °C, were studied in the present work. Raman and photoluminescence spectroscopic analyses showed that introduction of N into the ZnO matrix generated defects related to oxygen and zinc vacancies and interstitials. These defects were deep levels which contributed to the electron transport properties of the ZnO:N films, studied by analyzing the current-voltage characteristics of metal-insulator-semiconductor structures with ZnO:N films, measured at 298 and 77 K. At the appliedtechnological conditions of deposition and subsequent RTA at 400 °C n-type ZnO:N films were formed, while RTA at 550 °C transformed the n-ZnO:N films to p-ZnO:N ones. The charge transport in both types of ZnO:N films was carried out via deep levels in the ZnO energy gap. The density of the deep levels was in the order of 10 cm. In the temperature range of 77-298 K, the electron transport mechanism in the ZnO:N films was predominantly intertrap tunneling, but thermally activated hopping also took place.

摘要

本工作研究了通过射频磁控溅射在氩气、氧气和氮气的不同比例混合气体中沉积在Si(100)衬底上的氮掺杂ZnO(ZnO:N)薄膜,随后在400℃和550℃进行快速热退火(RTA)。拉曼光谱和光致发光光谱分析表明,向ZnO基体中引入N会产生与氧、锌空位和间隙相关的缺陷。这些缺陷是深能级,通过分析在298K和77K下测量的具有ZnO:N薄膜的金属-绝缘体-半导体结构的电流-电压特性,研究了它们对ZnO:N薄膜电子传输特性的影响。在400℃的沉积和后续RTA的应用工艺条件下,形成了n型ZnO:N薄膜,而在550℃的RTA将n-ZnO:N薄膜转变为p-ZnO:N薄膜。两种类型的ZnO:N薄膜中的电荷传输都是通过ZnO能隙中的深能级进行的。深能级密度约为10cm。在77-298K的温度范围内,ZnO:N薄膜中的电子传输机制主要是陷阱间隧穿,但也发生了热激活跳跃。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验