Suppr超能文献

用于超级电容器的物理和化学活化碳纳米颗粒的结构与电化学性质

Structural and Electrochemical Properties of Physically and Chemically Activated Carbon Nanoparticles for Supercapacitors.

作者信息

Alhebshi Nuha A, Salah Numan, Hussain Humair, Salah Yousef N, Yin Jian

机构信息

Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Centre of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Nanomaterials (Basel). 2021 Dec 30;12(1):122. doi: 10.3390/nano12010122.

Abstract

The demand for supercapacitors has been high during the integration of renewable energy devices into the electrical grid. Although activated carbon materials have been widely utilized as supercapacitor electrodes, the need for economic and sustainable processes to extract and activate carbon nanomaterials is still crucial. In this work, the biomass waste of date palm fronds is converted to a hierarchical porous nanostructure of activated carbon using simple ball-milling and sonication methods. Chemical and physical activation agents of NaOH and CO, receptively, were applied on two samples separately. Compared with the specific surface area of 603.5 m/g for the CO-activated carbon, the NaOH-activated carbon shows a higher specific surface area of 1011 m/g with a finer nanostructure. Their structural and electrochemical properties are functionalized to enhance electrode-electrolyte contact, ion diffusion, charge accumulation, and redox reactions. Consequently, when used as electrodes in an HSO electrolyte for supercapacitors, the NaOH-activated carbon exhibits an almost two-fold higher specific capacitance (125.9 vs. 56.8 F/g) than that of the CO-activated carbon at the same current density of 1 A/g. Moreover, using carbon cloth as a current collector provides mechanical flexibility to our electrodes. Our practical approach produces cost-effective, eco-friendly, and flexible activated carbon electrodes with a hierarchical porous nanostructure for supercapacitor applications.

摘要

在将可再生能源设备集成到电网的过程中,对超级电容器的需求一直很高。尽管活性炭材料已被广泛用作超级电容器电极,但开发经济且可持续的碳纳米材料提取和活化工艺仍然至关重要。在这项工作中,利用简单的球磨和超声处理方法,将枣椰叶的生物质废料转化为具有分级多孔纳米结构的活性炭。分别对两个样品施加了化学活化剂NaOH和物理活化剂CO。与CO活化炭603.5 m²/g的比表面积相比,NaOH活化炭具有更高的比表面积,为1011 m²/g,且纳米结构更精细。它们的结构和电化学性能经过功能化处理,以增强电极与电解质的接触、离子扩散、电荷积累和氧化还原反应。因此,当用作超级电容器HSO电解质中的电极时,在1 A/g的相同电流密度下,NaOH活化炭的比电容(125.9 F/g对比56.8 F/g)几乎是CO活化炭的两倍。此外,使用碳布作为集流体为我们的电极提供了机械柔韧性。我们的实用方法生产出了具有分级多孔纳米结构的、具有成本效益、环保且灵活的活性炭电极,可用于超级电容器应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b447/8746510/f16dfc553bdb/nanomaterials-12-00122-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验