Suppr超能文献

基于多阶段结构的虚拟筛选方法鉴定新型冠状病毒 NSP13 解旋酶抑制剂。

Multi-stage structure-based virtual screening approach towards identification of potential SARS-CoV-2 NSP13 helicase inhibitors.

机构信息

Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Salman International University (KSIU), Ras Sudr, Egypt.

Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh, Egypt.

出版信息

J Enzyme Inhib Med Chem. 2022 Dec;37(1):563-572. doi: 10.1080/14756366.2021.2022659.

Abstract

On account of its crucial role in the virus life cycle, SARS-COV-2 NSP13 helicase enzyme was exploited as a promising target to identify a novel potential inhibitor using multi-stage structure-based drug discovery approaches. Firstly, a 3D pharmacophore was generated based on the collected data from a protein-ligand interaction fingerprint (PLIF) study using key interactions between co-crystallised fragments and the NSP13 helicase active site. The ZINC database was screened through the generated 3D-pharmacophore retrieving 13 potential hits. All the retrieved hits exceeded the benchmark score of the co-crystallised fragments at the molecular docking step and the best five-hit compounds were selected for further analysis. Finally, a combination between molecular dynamics simulations and MM-PBSA based binding free energy calculations was conducted on the best hit (compound ) bound to NSP13 helicase enzyme, which identified as a potential potent NSP13 helicase inhibitor with binding free energy equals -328.6 ± 9.2 kcal/mol.

摘要

由于其在病毒生命周期中的关键作用,SARS-CoV-2 NSP13 解旋酶被用作一个有前途的靶点,通过多阶段基于结构的药物发现方法来识别一种新的潜在抑制剂。首先,基于使用共结晶片段和 NSP13 解旋酶活性位点之间的关键相互作用的蛋白质-配体相互作用指纹(PLIF)研究中收集的数据,生成了一个 3D 药效团。通过生成的 3D 药效团筛选 ZINC 数据库,检索到 13 个潜在的命中物。在分子对接步骤中,所有检索到的命中物都超过了共结晶片段的基准分数,并且选择了最佳的 5 个命中物化合物进行进一步分析。最后,对与 NSP13 解旋酶酶结合的最佳命中物(化合物 )进行分子动力学模拟和基于 MM-PBSA 的结合自由能计算的组合,鉴定出 作为一种具有结合自由能为-328.6±9.2 kcal/mol 的潜在 NSP13 解旋酶抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验