QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
Department of Psychological and Brain Sciences and The Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA.
Nat Commun. 2022 Jan 10;13(1):4. doi: 10.1038/s41467-021-26978-2.
The emergence of distributed patterns of neural activity supporting brain functions and behavior can be understood by study of the brain's low-dimensional topology. Functional neuroimaging demonstrates that brain activity linked to adaptive behavior is constrained to low-dimensional manifolds. In human participants, we tested whether these low-dimensional constraints preserve working memory performance following local neuronal perturbations. We combined multi-session functional magnetic resonance imaging, non-invasive transcranial magnetic stimulation (TMS), and methods translated from the fields of complex systems and computational biology to assess the functional link between changes in local neural activity and the reshaping of task-related low dimensional trajectories of brain activity. We show that specific reconfigurations of low-dimensional trajectories of brain activity sustain effective working memory performance following TMS manipulation of local activity on, but not off, the space traversed by these trajectories. We highlight an association between the multi-scale changes in brain activity underpinning cognitive function.
大脑功能和行为支持的分布式神经活动模式的出现可以通过研究大脑的低维拓扑结构来理解。功能神经影像学表明,与适应性行为相关的大脑活动受到低维流形的限制。在人类参与者中,我们测试了在局部神经元扰动后,这些低维约束是否能保持工作记忆性能。我们结合了多会话功能磁共振成像、非侵入性经颅磁刺激(TMS)以及从复杂系统和计算生物学领域转化而来的方法,以评估局部神经活动变化与与任务相关的大脑活动低维轨迹的重塑之间的功能联系。我们表明,在 TMS 处理局部活动时(而不是在这些轨迹所经过的区域之外),特定的低维轨迹的重新配置可以维持有效的工作记忆性能。我们强调了支持认知功能的大脑活动的多尺度变化之间的关联。