Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.
Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
Nat Commun. 2022 Jan 10;13(1):180. doi: 10.1038/s41467-021-27836-x.
Genome editing technologies introduce targeted chromosomal modifications in organisms yet are constrained by the inability to selectively modify repetitive genetic elements. Here we describe filtered editing, a genome editing method that embeds group 1 self-splicing introns into repetitive genetic elements to construct unique genetic addresses that can be selectively modified. We introduce intron-containing ribosomes into the E. coli genome and perform targeted modifications of these ribosomes using CRISPR/Cas9 and multiplex automated genome engineering. Self-splicing of introns post-transcription yields scarless RNA molecules, generating a complex library of targeted combinatorial variants. We use filtered editing to co-evolve the 16S rRNA to tune the ribosome's translational efficiency and the 23S rRNA to isolate antibiotic-resistant ribosome variants without interfering with native translation. This work sets the stage to engineer mutant ribosomes that polymerize abiological monomers with diverse chemistries and expands the scope of genome engineering for precise editing and evolution of repetitive DNA sequences.
基因组编辑技术可在生物体内实现靶向染色体修饰,但受到无法选择性修饰重复遗传元件的限制。在这里,我们描述了过滤编辑(filtered editing),这是一种基因组编辑方法,它将组 1 自我剪接内含子嵌入重复遗传元件中,构建可选择性修饰的独特遗传地址。我们将含有内含子的核糖体引入大肠杆菌基因组,并使用 CRISPR/Cas9 和多重自动化基因组工程对这些核糖体进行靶向修饰。内含子的转录后自我剪接产生无疤痕的 RNA 分子,从而产生靶向组合变体的复杂文库。我们使用过滤编辑共同进化 16S rRNA 来调整核糖体的翻译效率,并进化 23S rRNA 以分离抗生素抗性核糖体变体,而不干扰天然翻译。这项工作为工程化突变核糖体奠定了基础,这些核糖体可以聚合具有不同化学性质的非生物单体,并扩展了基因组工程的范围,以实现重复 DNA 序列的精确编辑和进化。