Suppr超能文献

使用光学相干断层扫描图像的深度学习神经网络对中心性浆液性脉络膜视网膜病变亚型进行分类:一项横断面研究。

Classifying central serous chorioretinopathy subtypes with a deep neural network using optical coherence tomography images: a cross-sectional study.

机构信息

Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Korea.

RAON DATA, Seoul, Korea.

出版信息

Sci Rep. 2022 Jan 10;12(1):422. doi: 10.1038/s41598-021-04424-z.

Abstract

Central serous chorioretinopathy (CSC) is the fourth most common retinopathy and can reduce quality of life. CSC is assessed using optical coherence tomography (OCT), but deep learning systems have not been used to classify CSC subtypes. This study aimed to build a deep learning system model to distinguish CSC subtypes using a convolutional neural network (CNN). We enrolled 435 patients with CSC from a single tertiary center between January 2015 and January 2020. Data from spectral domain OCT (SD-OCT) images of the patients were analyzed using a deep CNN. Five-fold cross-validation was employed to evaluate the model's ability to discriminate acute, non-resolving, inactive, and chronic atrophic CSC. We compared the performances of the proposed model, Resnet-50, Inception-V3, and eight ophthalmologists. Overall, 3209 SD-OCT images were included. The proposed model showed an average cross-validation accuracy of 70.0% (95% confidence interval [CI], 0.676-0.718) and the highest test accuracy was 73.5%. Additional evaluation in an independent set of 104 patients demonstrated the reliable performance of the proposed model (accuracy: 76.8%). Our model could classify CSC subtypes with high accuracy. Thus, automated deep learning systems could be useful in the classification and management of CSC.

摘要

中心性浆液性脉络膜视网膜病变(CSC)是第四大常见的视网膜病变,可降低生活质量。CSC 采用光学相干断层扫描(OCT)进行评估,但尚未使用深度学习系统对 CSC 亚型进行分类。本研究旨在构建一个使用卷积神经网络(CNN)区分 CSC 亚型的深度学习系统模型。我们纳入了 2015 年 1 月至 2020 年 1 月期间来自单一三级中心的 435 例 CSC 患者。使用深度 CNN 对患者的光谱域 OCT(SD-OCT)图像数据进行分析。采用五折交叉验证评估模型区分急性、非缓解、非活动和慢性萎缩性 CSC 的能力。我们比较了所提出的模型、Resnet-50、Inception-V3 和 8 位眼科医生的性能。总体而言,纳入了 3209 张 SD-OCT 图像。所提出的模型在平均交叉验证中的准确率为 70.0%(95%置信区间[CI],0.676-0.718),最高测试准确率为 73.5%。在 104 例独立患者的额外评估中,该模型表现出可靠的性能(准确率:76.8%)。我们的模型可以准确地对 CSC 亚型进行分类。因此,自动化深度学习系统可能对 CSC 的分类和管理很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0954/8748505/625abd2af64e/41598_2021_4424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验