Han Jinyoung, Choi Seong, Park Ji In, Hwang Joon Seo, Han Jeong Mo, Ko Junseo, Yoon Jeewoo, Hwang Daniel Duck-Jin
Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul 03063, Republic of Korea.
Department of Human-Artificial Intelligence Interaction, Sungkyunkwan University, Seoul 03063, Republic of Korea.
J Clin Med. 2023 Jan 28;12(3):1005. doi: 10.3390/jcm12031005.
Neovascular age-related macular degeneration (nAMD) and central serous chorioretinopathy (CSC) are two of the most common macular diseases. This study proposes a convolutional neural network (CNN)-based deep learning model for classifying the subtypes of nAMD (polypoidal choroidal vasculopathy, retinal angiomatous proliferation, and typical nAMD) and CSC (chronic CSC and acute CSC) and healthy individuals using single spectral-domain optical coherence tomography (SD-OCT) images. The proposed model was trained and tested using 6063 SD-OCT images from 521 patients and 47 healthy participants. We used three well-known CNN architectures (VGG-16, VGG-19, and ResNet) and two customized classification layers. Additionally, transfer learning and mix-up-based data augmentation were applied to improve robustness and accuracy. Our model demonstrated high accuracies of 99.7% and 91.1% in the nAMD and CSC classification and retinopathy (nAMD and CSC) subtype classification, including normal participants, respectively. Furthermore, we performed an external test to compare the classification accuracy with that of eight ophthalmologists, and our model showed the highest accuracy. The region determined to be important for classification by the model was confirmed using gradient-weighted class activation mapping. The model's clinical criteria were similar to that of the ophthalmologists.
新生血管性年龄相关性黄斑变性(nAMD)和中心性浆液性脉络膜视网膜病变(CSC)是两种最常见的黄斑疾病。本研究提出了一种基于卷积神经网络(CNN)的深度学习模型,用于使用单光谱域光学相干断层扫描(SD-OCT)图像对nAMD的亚型(息肉状脉络膜血管病变、视网膜血管瘤样增生和典型nAMD)、CSC的亚型(慢性CSC和急性CSC)以及健康个体进行分类。使用来自521名患者和47名健康参与者的6063张SD-OCT图像对所提出的模型进行训练和测试。我们使用了三种著名的CNN架构(VGG-16、VGG-19和ResNet)以及两个定制的分类层。此外,应用迁移学习和基于混合的数据增强来提高鲁棒性和准确性。我们的模型在nAMD和CSC分类以及视网膜病变(nAMD和CSC)亚型分类(包括正常参与者)中分别表现出99.7%和91.1%的高准确率。此外,我们进行了一项外部测试,将分类准确率与八位眼科医生的准确率进行比较,我们的模型显示出最高的准确率。使用梯度加权类激活映射确认了模型确定对分类重要的区域。该模型的临床标准与眼科医生的相似。