Tsegaye Kindu Nibret, Alemnew Marew, Berhane Nega
Department of Biology, Gondar College of Teachers Education, Gondar, Ethiopia.
Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
Front Bioeng Biotechnol. 2024 Sep 25;12:1466644. doi: 10.3389/fbioe.2024.1466644. eCollection 2024.
These days, bioethanol research is looking at using non-edible plant materials, called lignocellulosic feedstocks, because they are cheap, plentiful, and renewable. However, these materials are complex and require pretreatment to release fermentable sugars. , the industrial workhorse for bioethanol production, thrives in sugary environments and can handle high levels of ethanol. However, during lignocellulose fermentation, faces challenges like high sugar and ethanol concentrations, elevated temperatures, and even some toxic substances present in the pretreated feedstocks. Also, struggles to efficiently convert all the sugars (hexose and pentose) present in lignocellulosic hydrolysates. That's why scientists are exploring the natural variations within strains and even figuring out ways to improve them. This review highlights why remains a crucial player for large-scale bioethanol production from lignocellulose and discusses the potential of genome shuffling to create even more efficient yeast strains.
如今,生物乙醇研究着眼于使用非食用植物材料,即木质纤维素原料,因为它们价格低廉、储量丰富且可再生。然而,这些材料结构复杂,需要预处理以释放可发酵糖。用于生物乙醇生产的工业主力酵母在含糖环境中生长良好,并且能够耐受高浓度乙醇。然而,在木质纤维素发酵过程中,酵母面临着诸如高糖和乙醇浓度、温度升高以及预处理原料中存在的一些有毒物质等挑战。此外,酵母难以有效地转化木质纤维素水解产物中存在的所有糖类(己糖和戊糖)。这就是为什么科学家们正在探索酵母菌株内的自然变异,甚至想方设法对其进行改良。本综述强调了酵母为何仍然是大规模木质纤维素生物乙醇生产中的关键角色,并讨论了基因组改组创造更高效酵母菌株的潜力。