Suppr超能文献

甘油醛-3-磷酸脱氢酶同工酶之间杂交复合物的形成调节了酿酒酵母中的聚集状态、糖酵解活性和鞘脂状态。

The formation of hybrid complexes between isoenzymes of glyceraldehyde-3-phosphate dehydrogenase regulates its aggregation state, the glycolytic activity and sphingolipid status in Saccharomyces cerevisiae.

作者信息

Randez-Gil Francisca, Sánchez-Adriá Isabel E, Estruch Francisco, Prieto Jose A

机构信息

Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7., Paterna, 46980, Valencia, Spain.

Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, Burjassot, 46100, Spain.

出版信息

Microb Biotechnol. 2020 Mar;13(2):562-571. doi: 10.1111/1751-7915.13513. Epub 2019 Nov 19.

Abstract

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been traditionally considered a housekeeping protein involved in energy generation. However, evidence indicates that GAPDHs from different origins are tightly regulated and that this regulation may be on the basis of glycolysis-related and glycolysis-unrelated functions. In Saccharomyces cerevisiae, Tdh3 is the main GAPDH, although two other isoenzymes encoded by TDH1 and TDH2 have been identified. Like other GAPDHs, Tdh3 exists predominantly as a tetramer, although dimeric and monomeric forms have also been isolated. Mechanisms of Tdh3 regulation may thus imply changes in its oligomeric state or be based in its ability to interact with Tdh1 and/or Tdh2 to form hybrid complexes. However, no direct evidence of the existence of these interactions has been provided and the exact function of Tdh1,2 is unknown. Here, we show that Tdh1,2 immunopurified with a GFP-tagged version of Tdh3 and that lack of this interaction stimulates the Tdh3's aggregation. Furthermore, we found that the combined knockout of TDH1 and TDH2 promotes the loss of cell's viability and increases the growing rate, glucose consumption and CO production, suggesting a higher glycolytic flux in the mutant cells. Consistent with this, the tdh3 strain, which displays impaired in vitro GAPDH activity, exhibited the opposite phenotypes. Quite remarkably, tdh1 tdh2 mutant cells show increased sensitivity to aureobasidin A, an inhibitor of the inositolphosphoryl ceramide synthase, while cells lacking Tdh3 showed improved tolerance. The results are in agreement with a link between glycolysis and sphingolipid (SLs) metabolism. Engineering Tdh activity could be thus exploited to alter the SLs status with consequences in different aspects of yeast biotechnology.

摘要

糖酵解酶甘油醛-3-磷酸脱氢酶(GAPDH)传统上被认为是一种参与能量生成的管家蛋白。然而,有证据表明,来自不同来源的GAPDH受到严格调控,这种调控可能基于与糖酵解相关和与糖酵解无关的功能。在酿酒酵母中,Tdh3是主要的GAPDH,尽管已经鉴定出由TDH1和TDH2编码的另外两种同工酶。与其他GAPDH一样,Tdh3主要以四聚体形式存在,尽管也分离出了二聚体和单体形式。因此,Tdh3的调控机制可能意味着其寡聚状态的变化,或者基于其与Tdh1和/或Tdh2相互作用形成杂合复合物的能力。然而,尚未提供这些相互作用存在的直接证据,并且Tdh1,2的确切功能尚不清楚。在这里,我们表明Tdh1,2与带有GFP标签的Tdh3版本进行免疫纯化,并且这种相互作用的缺失会刺激Tdh3的聚集。此外,我们发现TDH1和TDH2的联合敲除会导致细胞活力丧失,并提高生长速率、葡萄糖消耗和CO产生,这表明突变细胞中的糖酵解通量更高。与此一致,在体外GAPDH活性受损的tdh3菌株表现出相反的表型。非常值得注意的是,tdh1 tdh2突变细胞对金担子素A(一种肌醇磷酸神经酰胺合酶抑制剂)的敏感性增加,而缺乏Tdh3的细胞表现出更高耐受性。这些结果与糖酵解和鞘脂(SLs)代谢之间的联系一致。因此,可以利用工程化的Tdh活性来改变SLs状态,从而对酵母生物技术的不同方面产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8e/7017825/70f0b3e6e2ae/MBT2-13-562-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验