Centro de Citricultura Sylvio Moreira, Laboratório de Biotecnologia, Instituto Agronômico, Cordeirópolis, SP, Brasil.
IdeeLab Biotecnologia, Piracicaba, SP, Brasil.
Adv Exp Med Biol. 2021;1346:171-188. doi: 10.1007/978-3-030-80352-0_10.
The development of modern genetic engineering approaches and high throughput technologies in biological research, besides the holistic view of systems biology, have triggered the progress of biotechnology to address plant productivity and stress adaptation. Indeed, plant biotechnology has the potential to overcome many problems we currently face that impair our agriculture, such as diseases and pests, environmental pressures, or climate change. The system biology field encompasses the identification of the general principles and patterns found in living systems, by studying the molecular diversity and integrate this knowledge in complex models of regulatory networks. The "omics," which comprises but not limited to genomic, transcriptomic, proteomic, epigenomic, and metabolomic studies in entire plants, allow a better understanding of plant system biology and further contribute to biotechnology development. In this chapter, we provided an overview on omic studies for the searching and identification of metabolites and proteins employed by microorganisms to develop biotechnological products. Moreover, we present an overview of the central aspects of small RNA as regulators of gene expression connecting system networks and the potential application into plant biotechnology.
现代基因工程方法和高通量生物技术在生物研究中的发展,以及系统生物学的整体观点,推动了生物技术的进步,以解决植物生产力和应激适应问题。事实上,植物生物技术有可能克服我们目前面临的许多问题,这些问题影响着我们的农业,如疾病和害虫、环境压力或气候变化。系统生物学领域包括通过研究分子多样性来确定存在于生命系统中的一般原理和模式,并将这些知识整合到复杂的调控网络模型中。“组学”不仅包括基因组、转录组、蛋白质组、表观基因组和代谢组学在整个植物中的研究,还可以帮助我们更好地理解植物系统生物学,并进一步促进生物技术的发展。在本章中,我们概述了代谢物和蛋白质的组学研究,这些代谢物和蛋白质被微生物用来开发生物技术产品。此外,我们还概述了小 RNA 作为连接系统网络的基因表达调控因子的中心方面,以及其在植物生物技术中的潜在应用。