College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
Biosens Bioelectron. 2022 May 1;203:114048. doi: 10.1016/j.bios.2022.114048. Epub 2022 Jan 29.
Enzyme-mediated signal amplification strategies have gained substantial attention in photoelectrochemical (PEC) biosensing, while natural enzyme on the photoelectrode inevitably obstructs the interfacial electron transfer, in turn deteriorating the photocurrent responses. Herein, Au nanoparticles and Cu-modified boron nitride nanosheets (AuNPs/Cu-BNNS) behaved as nanozyme to achieve remarkable magnification in the PEC signals from a novel signal-off aptasensor for ultra-sensitive assay of telomerase (TE) activity based on AgS/Ag nanoparticles decorated ZnInS/CN Z-scheme heterostructures (termed as AgS/Ag/ZnInS/CN, synthesized by hydrothermal treatment). Specifically, telomerase primer sequences (TS) were extended by TE in the presence of deoxyribonucleoside triphosphates (dNTPs), which was directly bond with the thiol modified complementary DNA (cDNA), achieving efficient linkage with the nanozyme via Au-S bond. The immobilized nanoenzyme catalyzed the oxidation between 4-chloro-1-naphthol (4-CN) and HO to generate insoluble precipitation on the photo-electrode. By virtue of the inhibited PEC signals with the TE-enabled TS extension, an aptasensor for assay of TE activity was developed, showing the wide linear range of 50-5×10 cell mL and a low detection limit of 19 cell mL. This work provides some valuable guidelines for developing advanced nanozyme-based PEC bioanalysis of diverse cancer cells.
酶介导的信号放大策略在光电化学(PEC)生物传感中引起了广泛关注,然而,天然酶在光电极上不可避免地阻碍了界面电子转移,从而降低了光电流响应。在此,金纳米颗粒和 Cu 修饰的氮化硼纳米片(AuNPs/Cu-BNNS)作为纳米酶,在基于 AgS/Ag 纳米颗粒修饰的 ZnInS/CN Z 型异质结(通过水热法合成,称为 AgS/Ag/ZnInS/CN)的新型信号关闭适体传感器中,实现了对端粒酶(TE)活性的超灵敏测定的 PEC 信号的显著放大。具体而言,在脱氧核糖核苷三磷酸(dNTPs)存在下,TE 延伸了端粒酶引物序列(TS),其直接与巯基修饰的互补 DNA(cDNA)结合,通过 Au-S 键与纳米酶实现高效连接。固定化纳米酶催化 4-氯-1-萘酚(4-CN)和 HO 之间的氧化反应,在光电极上生成不溶性沉淀。通过利用 TE 激活的 TS 延伸抑制 PEC 信号,开发了一种用于测定 TE 活性的适体传感器,其线性范围为 50-5×10 个细胞 mL,检测限低至 19 个细胞 mL。这项工作为开发基于先进纳米酶的多种癌细胞的 PEC 生物分析提供了一些有价值的指导。