IEEE Trans Neural Syst Rehabil Eng. 2022;30:329-339. doi: 10.1109/TNSRE.2022.3149899. Epub 2022 Feb 16.
Non-invasive brain-computer interfaces (BCIs) have been widely used for neural decoding, linking neural signals to control devices. Hybrid BCI systems using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention for overcoming the limitations of EEG- and fNIRS-standalone BCI systems. However, most hybrid EEG-fNIRS BCI studies have focused on late fusion because of discrepancies in their temporal resolutions and recording locations. Despite the enhanced performance of hybrid BCIs, late fusion methods have difficulty in extracting correlated features in both EEG and fNIRS signals. Therefore, in this study, we proposed a deep learning-based early fusion structure, which combines two signals before the fully-connected layer, called the fNIRS-guided attention network (FGANet). First, 1D EEG and fNIRS signals were converted into 3D EEG and fNIRS tensors to spatially align EEG and fNIRS signals at the same time point. The proposed fNIRS-guided attention layer extracted a joint representation of EEG and fNIRS tensors based on neurovascular coupling, in which the spatially important regions were identified from fNIRS signals, and detailed neural patterns were extracted from EEG signals. Finally, the final prediction was obtained by weighting the sum of the prediction scores of the EEG and fNIRS-guided attention features to alleviate performance degradation owing to delayed fNIRS response. In the experimental results, the FGANet significantly outperformed the EEG-standalone network. Furthermore, the FGANet has 4.0% and 2.7% higher accuracy than the state-of-the-art algorithms in mental arithmetic and motor imagery tasks, respectively.
非侵入式脑机接口(BCI)已广泛应用于神经解码,将神经信号与控制设备相连接。使用脑电图(EEG)和功能近红外光谱(fNIRS)的混合 BCI 系统已受到广泛关注,以克服 EEG 和 fNIRS 独立 BCI 系统的局限性。然而,由于其时间分辨率和记录位置的差异,大多数混合 EEG-fNIRS BCI 研究都集中在后期融合上。尽管混合 BCI 的性能得到了增强,但后期融合方法难以提取 EEG 和 fNIRS 信号中的相关特征。因此,在本研究中,我们提出了一种基于深度学习的早期融合结构,该结构在全连接层之前将两种信号进行组合,称为 fNIRS 引导注意力网络(FGANet)。首先,将 1D EEG 和 fNIRS 信号转换为 3D EEG 和 fNIRS 张量,以同时在同一时间点对 EEG 和 fNIRS 信号进行空间对齐。所提出的 fNIRS 引导注意力层基于神经血管耦合,从 fNIRS 信号中提取 EEG 和 fNIRS 张量的联合表示,其中识别出空间上重要的区域,并从 EEG 信号中提取详细的神经模式。最后,通过加权 EEG 和 fNIRS 引导注意力特征的预测得分之和来获得最终预测,以减轻由于 fNIRS 响应延迟导致的性能下降。在实验结果中,FGANet 明显优于 EEG 独立网络。此外,在心理算术和运动想象任务中,FGANet 的准确率分别比最先进的算法高出 4.0%和 2.7%。